Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Soft_Contextual_Data_Augmentation_for_Neural_Ma...
Search
MARUYAMA
August 25, 2019
0
160
Soft_Contextual_Data_Augmentation_for_Neural_Machine_Translation_.pdf
MARUYAMA
August 25, 2019
Tweet
Share
More Decks by MARUYAMA
See All by MARUYAMA
vampire.pdf
tmaru0204
0
180
Misspelling_Oblivious_Word_Embedding.pdf
tmaru0204
0
190
Simple_Unsupervised_Summarization_by_Contextual_Matching.pdf
tmaru0204
0
180
Controlling_Text_Complexity_in_Neural_Machine_Translation.pdf
tmaru0204
0
160
20191028_literature-review.pdf
tmaru0204
0
150
Hint-Based_Training_for_Non-Autoregressive_Machine_Translation.pdf
tmaru0204
0
140
An_Embarrassingly_Simple_Approach_for_Transfer_Learning_from_Pretrained_Language_Models_.pdf
tmaru0204
0
150
Addressing_Trobulesome_Words_in_Neural_Machine_Translation.pdf
tmaru0204
0
150
Simple_Unsupervised_Keyphrase_Extraction_using_Sentence_Embeddings.pdf
tmaru0204
0
190
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
96
6.2k
Become a Pro
speakerdeck
PRO
29
5.5k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
580
How to Ace a Technical Interview
jacobian
279
23k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
19k
The Art of Programming - Codeland 2020
erikaheidi
55
13k
GitHub's CSS Performance
jonrohan
1032
460k
Embracing the Ebb and Flow
colly
87
4.8k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Transcript
4PGU$POUFYUVBM%BUB"VHNFOUBUJPO GPS/FVSBM.BDIJOF5SBOTMBUJPO 'FJ(BP +JOIVB;IV -JKVO8V :JOHDF9JB 5BP2JO 9VFRJ$IFOH 8FOHBOH;IPV 5JF:BO-JV
"$- QBHFTr -JUFSBUVSFSFWJFX /BHBPLB6OJWFSTJUZPG5FDIOPMPHZ5BLVNJ.BSVZBNB
"CTUSBDU ⾣จ຺Λߟྀͨ͠ιϑτͳσʔλ֦ு ⾣χϡʔϥϧػց༁ʹ͓͚Δσʔλ֦ுख๏ΛఏҊ ⾣σʔλ͕গͳ͍߹ɾେྔʹ͋Δ߹ɺͲͪΒʹ͓͍ͯ طଘͷσʔλ֦ுख๏Λ্ճΔੑೳΛୡ
.FUIPE ⾣4PGUDPOUFYUVBMEBUBBVHNFOUBUJPO ɾFNCFEEJOHPGTPGUXPSEТ EFNCFEEJOHNBUSJY
&YQFSJNFOU ⾣#BTFMJOFT #BTFσʔλ֦ுख๏ෆ༻ 4XBQ૭෯LͷதͰɺϥϯμϜʹ୯ޠͷҐஔΛೖΕସ͑ %SPQPVUϥϯμϜʹ୯ޠΛܽམ
&YQFSJNFOU ⾣#BTFMJOFT #MBOLϥϯμϜʹQMBDFIPMEFSUPLFOl@zʹஔ͖͑ 4NPPUIVOJHSBNͷසʹج͍ͮͯ୯ޠΛαϯϓϦϯά͠ɺ -.TBNQMF ݴޠϞσϧͷग़ྗʹج͍ͮͯ୯ޠΛαϯϓϦϯά͠ɺ ϥϯμϜʹஔ͖͑ ϥϯμϜʹஔ͖͑
&YQFSJNFOU ⾣%BUBTFUT ɾ*845\(FSNBO 4QBOJTI )FCSFX^ˠ&OHMJTI ɾ8.5&OHMJTIˠ(FSNBO ⾣.PEFM ɾ-. /.5USBOTGPSNFSBSDIJUFDUVSF ɾSFQMBDJOHQSPCBCJMJUZЍ\
^
&YQFSJNFOU
&YQFSJNFOU ఏҊख๏ЍͰɺ #-&6͕࠷େ طଘख๏ЍͰɺ #-&6Լ
$PODMVTJPOT ⾣จ຺Λߟྀͨ͠ιϑτͳσʔλ֦ு ⾣χϡʔϥϧػց༁ʹ͓͚Δσʔλ֦ுख๏ΛఏҊ ⾣σʔλ͕গͳ͍߹ɾେྔʹ͋Δ߹ɺͲͪΒʹ͓͍ͯ طଘͷσʔλ֦ுख๏Λ্ճΔੑೳΛୡ