Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
An_Embarrassingly_Simple_Approach_for_Transfer_...
Search
MARUYAMA
July 10, 2019
0
160
An_Embarrassingly_Simple_Approach_for_Transfer_Learning_from_Pretrained_Language_Models_.pdf
MARUYAMA
July 10, 2019
Tweet
Share
More Decks by MARUYAMA
See All by MARUYAMA
vampire.pdf
tmaru0204
0
180
Misspelling_Oblivious_Word_Embedding.pdf
tmaru0204
0
190
Simple_Unsupervised_Summarization_by_Contextual_Matching.pdf
tmaru0204
0
180
Controlling_Text_Complexity_in_Neural_Machine_Translation.pdf
tmaru0204
0
170
20191028_literature-review.pdf
tmaru0204
0
160
Hint-Based_Training_for_Non-Autoregressive_Machine_Translation.pdf
tmaru0204
0
140
Soft_Contextual_Data_Augmentation_for_Neural_Machine_Translation_.pdf
tmaru0204
0
170
Addressing_Trobulesome_Words_in_Neural_Machine_Translation.pdf
tmaru0204
0
160
Simple_Unsupervised_Keyphrase_Extraction_using_Sentence_Embeddings.pdf
tmaru0204
0
190
Featured
See All Featured
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
10
910
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.3k
Unsuck your backbone
ammeep
671
58k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Into the Great Unknown - MozCon
thekraken
40
2.1k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
A better future with KSS
kneath
239
18k
Automating Front-end Workflow
addyosmani
1371
200k
Transcript
"O&NCBSSBTTJOHMZ4JNQMF"QQSPBDIGPS 5SBOTGFS-FBSOJOHGSPN1SFUSBJOFE-BOHVBHF.PEFMT "MFYBOESB$ISPOPQPVMPV $ISJTUPT#B[JPUJT "MFYBOESPT1PUBNJBOPT /""$-)-5 QBHFTr -JUFSBUVSFSFWJFX /BHBPLB6OJWFSTJUZPG5FDIOPMPHZ5BLVNJ.BSVZBNB
"CTUSBDU ⾣FOEUPFOEʹֶशͤ͞ΔγϯϓϧͳసҠֶशख๏ΛఏҊ ⾣ࣄલֶशͨ͠ݴޠϞσϧΛྨλεΫʹpOFUVOJOH ⾣༷ʑͳςΩετྨλεΫͰɺطଘख๏Λ͑ΔੑೳΛୡ
3FMBUFEXPSL ⾣6-.'J5 %JTDSJNJOBUJWFpOFUVOJOH֤ͰֶशΛมԽͤ͞Δ 4MBOUFEUSJBOHVMBSMFBSOJOHSBUFT
.PEFM 4J"5- ⾣-.1SFUSBJOJOH ⾣5SBOTGFSBVYJMJBSZMPTT ɾFYQPOFOUJBMEFDBZPGЍ FQPDIຖʹЍΛࢦతʹݮਰ ɾTFRVFOUJBMVOGSFF[JOH ্ͷ͔Βॱ࣍ղౚ͠ɺpOFUVOJOH
&YQFSJNFOUBMTFUVQT ⾣%BUBTFUT ɾ*SPOZJSPOZEFUFDUJPO ɾ4FOUTFOUJNFOUBOBMZTJT ɾ4$W 4$WTBSDBTNEFUFDUJPO ɾ1TZDI&YQFNPUJPOSFDPHOJUJPO
3FTVMUT ⾣"CMBUJPOTUVEZ
3FTVMUT ⾣/VNCFSPGFYBNQMFT ɾ4J"5- DPOUJOVPVTMJOFT ɾ6-.'J5 EBTIFEMJOFT dσʔλఔͰɺ 6-.'J5ʹඖఢ͢Δੑೳ
3FTVMUT ⾣&YQPOFOUJBMEFDBZPGЍ *OJUJBMWBMVF 'JOBMWBMVF
$PODMVTJPO ⾣FOEUPFOEʹֶशͤ͞ΔγϯϓϧͳసҠֶशख๏ΛఏҊ ⾣ࣄલֶशͨ͠ݴޠϞσϧΛྨλεΫʹpOFUVOJOH ⾣༷ʑͳςΩετྨλεΫͰɺطଘख๏Λ͑ΔੑೳΛୡ