Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
vampire.pdf
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
MARUYAMA
February 25, 2020
0
190
vampire.pdf
MARUYAMA
February 25, 2020
Tweet
Share
More Decks by MARUYAMA
See All by MARUYAMA
Misspelling_Oblivious_Word_Embedding.pdf
tmaru0204
0
200
Simple_Unsupervised_Summarization_by_Contextual_Matching.pdf
tmaru0204
0
190
Controlling_Text_Complexity_in_Neural_Machine_Translation.pdf
tmaru0204
0
180
20191028_literature-review.pdf
tmaru0204
0
160
Hint-Based_Training_for_Non-Autoregressive_Machine_Translation.pdf
tmaru0204
0
150
Soft_Contextual_Data_Augmentation_for_Neural_Machine_Translation_.pdf
tmaru0204
0
180
An_Embarrassingly_Simple_Approach_for_Transfer_Learning_from_Pretrained_Language_Models_.pdf
tmaru0204
0
160
Addressing_Trobulesome_Words_in_Neural_Machine_Translation.pdf
tmaru0204
0
170
Simple_Unsupervised_Keyphrase_Extraction_using_Sentence_Embeddings.pdf
tmaru0204
0
200
Featured
See All Featured
Principles of Awesome APIs and How to Build Them.
keavy
128
17k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
72
Amusing Abliteration
ianozsvald
0
96
4 Signs Your Business is Dying
shpigford
187
22k
Rails Girls Zürich Keynote
gr2m
96
14k
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
50
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
140
The Curse of the Amulet
leimatthew05
1
8.3k
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
[SF Ruby Conf 2025] Rails X
palkan
0
740
Transcript
Variational Pretraining for Semi-supervised Text Classification จݙհ Suchin Gururangan, Tam
Dang, Dallas Card, Noah A. Smith ACL2019, pages 5880–5894
Abstract ⾣ܰྔͳࣄલֶशख๏ΛఏҊ ɾখنσʔλͰޮతʹֶशՄೳ ɾߴʹಈ࡞ ⾣ςΩετྨλεΫʹ͓͍ͯɺ ɹ&-.P #&35ʹඖఢ͢ΔੑೳΛୡ
Introduction ⾣&-.P #&35ͷࣄલֶशϞσϧ͕ ɹ͘ར༻͞Ε͍ͯΔ ⾣େنͳίʔύεɾܭࢉࢿݯ͕ඞཁ ⾣ܰྔ͔ͭޮՌతͳࣄલֶशํ๏ΛఏҊ
Model ⾣1SFUSBJOJOH ɾ7BSJBUJPOBM"VUP&ODPEFS
Model ⾣1SFUSBJOJOH ɾ7BSJBUJPOBM"VUP&ODPEFS
Model ⾣5FYUDMBTTJpDBUJPO
Model ⾣5FYUDMBTTJpDBUJPO ɾ7".1*3&FNCFEEJOH݁߹ ɾ%FFQ"WFSBHF/FUXPSLͰ Τϯίʔυ
Experimental setup ⾣%BUB ɾࣄલֶशσʔλ ɾྨثֶशςετ d FYBNQMFT JOEPNBJO d
FYBNQMFT
Experimental setup ⾣-PXSFTPVSDFTFUUJOH ɾ#BTFMJOFڭࢣσʔλͷΈͰֶश ɾ4FMGUSBJOJOHڭࢣ͋Γֶश ڭࢣσʔλ Ϟσϧͷ༧ଌ݁Ռ ɾ(-07& *%
JOEPNBJOσʔλͰֶश ɾ(-07& 0% .XPSETͷίʔύεͰֶश
Results ⾣-PXSFTPVSDFTFUUJOH
Results ⾣-PXSFTPVSDFTFUUJOH
Experimental setup ⾣)JHISFTPVSDFTFUUJOH ɾ5SBOTGPSNFSCBTFE&-.P ɾ#&35 GSP[FO pOFUVOJOH QSFUSBJOJOH JOEPNBJO GSP[FO
pOFUVOJOH
Results ⾣)JHISFTPVSDFTFUUJOH
Results ⾣)JHISFTPVSDFTFUUJOH
Results ⾣$PNQVUBUJPOBM3FRVJSFNFOUT
Conclusions ⾣ܰྔͳࣄલֶशख๏ΛఏҊ ɾখنσʔλͰޮతʹֶशՄೳ ɾߴʹಈ࡞ ⾣ςΩετྨλεΫʹ͓͍ͯɺ ɹ&-.P #&35ʹඖఢ͢ΔੑೳΛୡ