Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
vampire.pdf
Search
MARUYAMA
February 25, 2020
0
170
vampire.pdf
MARUYAMA
February 25, 2020
Tweet
Share
More Decks by MARUYAMA
See All by MARUYAMA
Misspelling_Oblivious_Word_Embedding.pdf
tmaru0204
0
180
Simple_Unsupervised_Summarization_by_Contextual_Matching.pdf
tmaru0204
0
170
Controlling_Text_Complexity_in_Neural_Machine_Translation.pdf
tmaru0204
0
160
20191028_literature-review.pdf
tmaru0204
0
150
Hint-Based_Training_for_Non-Autoregressive_Machine_Translation.pdf
tmaru0204
0
130
Soft_Contextual_Data_Augmentation_for_Neural_Machine_Translation_.pdf
tmaru0204
0
160
An_Embarrassingly_Simple_Approach_for_Transfer_Learning_from_Pretrained_Language_Models_.pdf
tmaru0204
0
150
Addressing_Trobulesome_Words_in_Neural_Machine_Translation.pdf
tmaru0204
0
150
Simple_Unsupervised_Keyphrase_Extraction_using_Sentence_Embeddings.pdf
tmaru0204
0
190
Featured
See All Featured
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Music & Morning Musume
bryan
46
6.7k
The Pragmatic Product Professional
lauravandoore
35
6.7k
Designing for Performance
lara
610
69k
The Straight Up "How To Draw Better" Workshop
denniskardys
235
140k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
6
320
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
700
Practical Orchestrator
shlominoach
189
11k
The Language of Interfaces
destraynor
158
25k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Navigating Team Friction
lara
187
15k
Transcript
Variational Pretraining for Semi-supervised Text Classification จݙհ Suchin Gururangan, Tam
Dang, Dallas Card, Noah A. Smith ACL2019, pages 5880–5894
Abstract ⾣ܰྔͳࣄલֶशख๏ΛఏҊ ɾখنσʔλͰޮతʹֶशՄೳ ɾߴʹಈ࡞ ⾣ςΩετྨλεΫʹ͓͍ͯɺ ɹ&-.P #&35ʹඖఢ͢ΔੑೳΛୡ
Introduction ⾣&-.P #&35ͷࣄલֶशϞσϧ͕ ɹ͘ར༻͞Ε͍ͯΔ ⾣େنͳίʔύεɾܭࢉࢿݯ͕ඞཁ ⾣ܰྔ͔ͭޮՌతͳࣄલֶशํ๏ΛఏҊ
Model ⾣1SFUSBJOJOH ɾ7BSJBUJPOBM"VUP&ODPEFS
Model ⾣1SFUSBJOJOH ɾ7BSJBUJPOBM"VUP&ODPEFS
Model ⾣5FYUDMBTTJpDBUJPO
Model ⾣5FYUDMBTTJpDBUJPO ɾ7".1*3&FNCFEEJOH݁߹ ɾ%FFQ"WFSBHF/FUXPSLͰ Τϯίʔυ
Experimental setup ⾣%BUB ɾࣄલֶशσʔλ ɾྨثֶशςετ d FYBNQMFT JOEPNBJO d
FYBNQMFT
Experimental setup ⾣-PXSFTPVSDFTFUUJOH ɾ#BTFMJOFڭࢣσʔλͷΈͰֶश ɾ4FMGUSBJOJOHڭࢣ͋Γֶश ڭࢣσʔλ Ϟσϧͷ༧ଌ݁Ռ ɾ(-07& *%
JOEPNBJOσʔλͰֶश ɾ(-07& 0% .XPSETͷίʔύεͰֶश
Results ⾣-PXSFTPVSDFTFUUJOH
Results ⾣-PXSFTPVSDFTFUUJOH
Experimental setup ⾣)JHISFTPVSDFTFUUJOH ɾ5SBOTGPSNFSCBTFE&-.P ɾ#&35 GSP[FO pOFUVOJOH QSFUSBJOJOH JOEPNBJO GSP[FO
pOFUVOJOH
Results ⾣)JHISFTPVSDFTFUUJOH
Results ⾣)JHISFTPVSDFTFUUJOH
Results ⾣$PNQVUBUJPOBM3FRVJSFNFOUT
Conclusions ⾣ܰྔͳࣄલֶशख๏ΛఏҊ ɾখنσʔλͰޮతʹֶशՄೳ ɾߴʹಈ࡞ ⾣ςΩετྨλεΫʹ͓͍ͯɺ ɹ&-.P #&35ʹඖఢ͢ΔੑೳΛୡ