Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
vampire.pdf
Search
MARUYAMA
February 25, 2020
0
190
vampire.pdf
MARUYAMA
February 25, 2020
Tweet
Share
More Decks by MARUYAMA
See All by MARUYAMA
Misspelling_Oblivious_Word_Embedding.pdf
tmaru0204
0
200
Simple_Unsupervised_Summarization_by_Contextual_Matching.pdf
tmaru0204
0
190
Controlling_Text_Complexity_in_Neural_Machine_Translation.pdf
tmaru0204
0
170
20191028_literature-review.pdf
tmaru0204
0
160
Hint-Based_Training_for_Non-Autoregressive_Machine_Translation.pdf
tmaru0204
0
150
Soft_Contextual_Data_Augmentation_for_Neural_Machine_Translation_.pdf
tmaru0204
0
170
An_Embarrassingly_Simple_Approach_for_Transfer_Learning_from_Pretrained_Language_Models_.pdf
tmaru0204
0
160
Addressing_Trobulesome_Words_in_Neural_Machine_Translation.pdf
tmaru0204
0
170
Simple_Unsupervised_Keyphrase_Extraction_using_Sentence_Embeddings.pdf
tmaru0204
0
190
Featured
See All Featured
Balancing Empowerment & Direction
lara
5
790
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Side Projects
sachag
455
43k
We Have a Design System, Now What?
morganepeng
54
7.9k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
[SF Ruby Conf 2025] Rails X
palkan
0
500
How STYLIGHT went responsive
nonsquared
100
6k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Agile that works and the tools we love
rasmusluckow
331
21k
Statistics for Hackers
jakevdp
799
230k
Six Lessons from altMBA
skipperchong
29
4.1k
Transcript
Variational Pretraining for Semi-supervised Text Classification จݙհ Suchin Gururangan, Tam
Dang, Dallas Card, Noah A. Smith ACL2019, pages 5880–5894
Abstract ⾣ܰྔͳࣄલֶशख๏ΛఏҊ ɾখنσʔλͰޮతʹֶशՄೳ ɾߴʹಈ࡞ ⾣ςΩετྨλεΫʹ͓͍ͯɺ ɹ&-.P #&35ʹඖఢ͢ΔੑೳΛୡ
Introduction ⾣&-.P #&35ͷࣄલֶशϞσϧ͕ ɹ͘ར༻͞Ε͍ͯΔ ⾣େنͳίʔύεɾܭࢉࢿݯ͕ඞཁ ⾣ܰྔ͔ͭޮՌతͳࣄલֶशํ๏ΛఏҊ
Model ⾣1SFUSBJOJOH ɾ7BSJBUJPOBM"VUP&ODPEFS
Model ⾣1SFUSBJOJOH ɾ7BSJBUJPOBM"VUP&ODPEFS
Model ⾣5FYUDMBTTJpDBUJPO
Model ⾣5FYUDMBTTJpDBUJPO ɾ7".1*3&FNCFEEJOH݁߹ ɾ%FFQ"WFSBHF/FUXPSLͰ Τϯίʔυ
Experimental setup ⾣%BUB ɾࣄલֶशσʔλ ɾྨثֶशςετ d FYBNQMFT JOEPNBJO d
FYBNQMFT
Experimental setup ⾣-PXSFTPVSDFTFUUJOH ɾ#BTFMJOFڭࢣσʔλͷΈͰֶश ɾ4FMGUSBJOJOHڭࢣ͋Γֶश ڭࢣσʔλ Ϟσϧͷ༧ଌ݁Ռ ɾ(-07& *%
JOEPNBJOσʔλͰֶश ɾ(-07& 0% .XPSETͷίʔύεͰֶश
Results ⾣-PXSFTPVSDFTFUUJOH
Results ⾣-PXSFTPVSDFTFUUJOH
Experimental setup ⾣)JHISFTPVSDFTFUUJOH ɾ5SBOTGPSNFSCBTFE&-.P ɾ#&35 GSP[FO pOFUVOJOH QSFUSBJOJOH JOEPNBJO GSP[FO
pOFUVOJOH
Results ⾣)JHISFTPVSDFTFUUJOH
Results ⾣)JHISFTPVSDFTFUUJOH
Results ⾣$PNQVUBUJPOBM3FRVJSFNFOUT
Conclusions ⾣ܰྔͳࣄલֶशख๏ΛఏҊ ɾখنσʔλͰޮతʹֶशՄೳ ɾߴʹಈ࡞ ⾣ςΩετྨλεΫʹ͓͍ͯɺ ɹ&-.P #&35ʹඖఢ͢ΔੑೳΛୡ