Upgrade to Pro — share decks privately, control downloads, hide ads and more …

SPCSでエンドツーエンドな深層学習に挑戦してみた

Toru Hiyama
March 01, 2024
96

 SPCSでエンドツーエンドな深層学習に挑戦してみた

「Snowpark Container Servicesで解き放つ!データアプリケーションの魔法」における登壇資料

Toru Hiyama

March 01, 2024
Tweet

Transcript

  1. © 2024 NTT DATA Japan Corporation 自己紹介 檜山 徹(Hiyama Toru)

    株式会社NTTデータ Snowflakeビジネス推進室員! SnowVillage Team Streamlit メンバー SNS X(Twitter): @toru_data Qiita:@toru_hiyama SnowVillage #certifications にて、 毎日30分~1時間もくもくしてゲット!
  2. © 2024 NTT DATA Japan Corporation 目次 エンドツーエンドの深層学習アーキテクチャ ① コンテナ

    ② 深層学習 ③ ジョブ・コンピュートプール ④ ジョブの確認 ⑤⑥ Streamlitアプリ まとめ
  3. © 2024 NTT DATA Japan Corporation エンドツーエンドの深層学習アーキテクチャ ➢ 本LTでは、このアーキテクチャをかいつまんで解説していきます。 開発環境

    Snowflake拡張機能 イメージレジストリ ①コンテナイメージPush docker build ~ doker push ~ Compute Pool モデルレジストリ ボリューム(ステージ) execute service in compute pool ~ from @stage spec=spec.yml コンテナ train.py ④マウント ②深層学習資材準備 PUT file:// ~ ④訓練済みモデル保存 ④コンテナロード ③ジョブ定義・実行 ⑤ジョブ実行 ③ジョブ起動 ⑥訓練済み モデル呼び出し イベントテーブル ④イベントログ保存 CI/CDもできるようになってきていますが、 今回は試せていません。
  4. © 2024 NTT DATA Japan Corporation ① コンテナイメージと構成ファイル(準備1/3) • Dockerfileからコンテナイメージを作成

    • コンテナイメージをSnowflakeリポジトリにアップロード • コンテナ構成ファイル(spec.yml)をアップロード > docker build -t spcs-pytorch . > docker push <repository url>/spcs-pytorch (snowsql) > put file://<path>/spec.yml @spec_stg 構成ファイルでは下記を指定 • コンテナイメージ • GPUの制限 • マウントするボリューム
  5. © 2024 NTT DATA Japan Corporation ② 深層学習 訓練用スクリプト・画像(準備2/3) •

    PyTorchによる訓練スクリプトを記述 • 超簡易なニューラルネットワークモデルと訓練スクリプト • イベントテーブルへのログ保存 • 訓練済みモデルをSnowflakeのモデルレジストリに登録 • 訓練用資材をボリューム用ステージに配置 (snowsql) > put file://<path>/train.py @volume (snowsql) > put file://<path>/MNIST/* @volume ちなみに、セッションの作成は、 OAuthトークンにより行います。
  6. © 2024 NTT DATA Japan Corporation ③ ジョブ定義(準備3/3) • コンピュートプールの作成

    • ジョブ定義・実行 execute service in compute pool gpu_job_pool from @spec_stg spec=spec.yml ; create compute pool gpu_job_pool min_nodes=1 max_nodes=1 instance_family=GPU_NV_S ;
  7. © 2024 NTT DATA Japan Corporation ④ モデル訓練ジョブの呼び出し結果の確認 ➢ いい感じ!

    GPUも認識してる ログもちゃんとイベントテーブルに吐き出されてる モデルもモデルレジストリに保存されてる! 学習もできてる (ボリューム(ステージ)に保存)
  8. © 2024 NTT DATA Japan Corporation ⑤⑥ Streamlitアプリの作成 ➢ Team

    Streamlit たるもの、、、作るよ! < きみたち自信満々に間違えててかわいいね。
  9. © 2024 NTT DATA Japan Corporation おわりに ◼ 深層学習をするための足回りさえ揃えてしまえば、 開発環境で記述した訓練用コードをPutするだけで、

    GPUによるモデル訓練からSnowflakeへのデプロイまで行えることがわかりました。 ✓ SnowflakeのDev・ML機能、だいぶそろってきた! ◼ 今回の検証を通じて、なんでSPCSじゃないといけないの?に対して、 すでにSnowflakeを導入しているが、クラウドをそこまで利用していない方々が、 低い学習コスト・運用コストでコンテナ環境を構築できることにあると感じました。 ✓ やっぱり、マネージドは、プライスレス! 開発環境 Snowflake拡張機能 イメージレジストリ ①コンテナイメージPush docker build ~ doker push ~ Compute Pool モデルレジストリ ボリューム(ステージ) execute service in compute pool ~ from @stage spec=spec.yml コンテナ train.py ④マウント ②深層学習資材準備 PUT file:// ~ ④訓練済みモデル保存 ④コンテナロード ③ジョブ定義・実行 ⑤ジョブ実行 ③ジョブ起動 ⑥訓練済み モデル呼び出し イベントテーブル ④イベントログ保存 CI/CDもできるようになってきていますが、 今回は試せていません。