Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SageMakerとIoT GreengrassとAmplifyで作るノーコードエッジAIプラ...
Search
tsmiyamoto
December 06, 2021
Programming
1
1.2k
SageMakerとIoT GreengrassとAmplifyで作るノーコードエッジAIプラットフォーム
2021/12/06
JAWS-UG朝会 #28登壇資料
株式会社TechSword
CTO 宮本 大輝
tsmiyamoto
December 06, 2021
Tweet
Share
More Decks by tsmiyamoto
See All by tsmiyamoto
AIサービス立ち上げにAWS Amplifyを使ってわかったPros & Cons
tsmiyamoto
0
1.8k
SageMakerが対応していないアルゴリズムの学習をECRで行ってノーコードAIプラットフォームを作った|株式会社TechSword
tsmiyamoto
0
580
Other Decks in Programming
See All in Programming
🔨 小さなビルドシステムを作る
momeemt
4
690
Flutter with Dart MCP: All You Need - 박제창 2025 I/O Extended Busan
itsmedreamwalker
0
150
Namespace and Its Future
tagomoris
6
710
Navigating Dependency Injection with Metro
zacsweers
3
3.5k
意外と簡単!?フロントエンドでパスキー認証を実現する WebAuthn
teamlab
PRO
2
780
Performance for Conversion! 分散トレーシングでボトルネックを 特定せよ
inetand
0
3.4k
AI Coding Agentのセキュリティリスク:PRの自己承認とメルカリの対策
s3h
0
240
テストカバレッジ100%を10年続けて得られた学びと品質
mottyzzz
2
610
Platformに“ちょうどいい”責務ってどこ? 関心の熱さにあわせて考える、責務分担のプラクティス
estie
1
140
テストコードはもう書かない:JetBrains AI Assistantに委ねる非同期処理のテスト自動設計・生成
makun
0
540
Swift Updates - Learn Languages 2025
koher
2
510
Testing Trophyは叫ばない
toms74209200
0
890
Featured
See All Featured
Raft: Consensus for Rubyists
vanstee
140
7.1k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
Documentation Writing (for coders)
carmenintech
74
5k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.2k
Optimizing for Happiness
mojombo
379
70k
The Cult of Friendly URLs
andyhume
79
6.6k
Designing for humans not robots
tammielis
253
25k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.9k
Become a Pro
speakerdeck
PRO
29
5.5k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Transcript
SageMakerとIoT GreengrassとAmplifyで作る ノーコードエッジAIプラットフォーム 株式会社TechSword|CTO 宮本 大輝
@i7i5 もくじ 1. 会社・サービス紹介 2. アーキテクチャ 3. ハマったポイント 4. おわりに
Introduction 会社・サービス紹介
@i7i5 自己紹介 宮本 大輝 みやもと たいき ▪ 株式会社TechSword 取締役CTO ▪
岡山大学大学院自然科学研究科M1 休学中 ▪ 楕円曲線暗号に関する研究 ▪ ssh-keygen –t ed25519のやつ ▪ 好きなAWSサービス ▪ Amplify ▪ IoT Greengrass ▪ SageMaker
名称 株式会社TechSword 住所 〒700-8530 岡山県岡山市北区 津島中3丁目1番1号 会社概要 事業内容 ▪ ノーコードエッジAIプラットフォームの開発・運営・提供
▪ AIの開発・導入・運用支援 設立 2021年5月19日 代表者 長島慶樹 @i7i5
VISION すべての人に、AIを。
MISSION AI技術を民主化し 最適化された未来社会を実現する
@i7i5 メンバー 岡山大学大学院 機械システム工学専攻 代表取締役CEO 長島 慶樹 岡山大学大学院 電子情報システム 工学専攻
取締役CTO 宮本 大輝 岡山大学工学部 電気通信系学科 AIエンジニア 池坂 和真 技術顧問 馬場 謙介 岡山大学サイバーフィジカル 情報応用研究コア 教授(特任) 技術顧問 野上 保之 岡山大学工学部教授 DX担当副理事 岡山大学工学部 電気通信系学科 AIエンジニア 疋田 智矢 岡山大学工学部 電気通信系学科 Webフロントエンジニア 宮本 稜太 岡山大学工学部 電気通信系学科 AIエンジニア 川田 優太
@i7i5 国別AI導入率 85% 51% 39% 0% 10% 20% 30% 40%
50% 60% 70% 80% 90% 中国 米国 日本 日本は先進国の中で圧倒的な AI後進国
@i7i5 解決する課題 AI人材の供給不足 出典: 経済産業省『IT人材需給に関する調査』 AI人材需給ギャップの見通し 101.8 105.9 111.0 113.3
+3.4万人 +4.4万人 +8.8万人 +12.4万人 95.0 100.0 105.0 110.0 115.0 120.0 125.0 130.0 2018年 2020年 2025年 2030年 人数 [万人] 供給 需要 0 AI外注コストの相場 AI開発のコストの高さ 内容 費用相場 コンサルティング 40-200万円 AI化可能性チェック 40-100万円 プロトタイプ作成 100-数百万円 AIモデル開発 月額 80-250万円×人月 システム開発 月額 60-200万円×人月
@i7i5 ノーコードエッジAIプラットフォーム TechSword Platform ▪ 知識0・スキル0でもAIの開発が可能 ▪ 容易にビジネス実装が可能 ▪ 安価な導入コスト
None
Architecture アーキテクチャ
@i7i5 アーキテクチャ
@i7i5 フロント ▪React ▪TypeScript ▪Amplify ▪ API ▪ Auth ▪
Function ▪ Storage
@i7i5 機械学習 ▪SageMaker Training Job ▪ YOLOv4 ▪SageMaker組み込みの物体検出モデルを 使わない理由は? →精度
@i7i5 機械学習 ▪IoT Greengrass ▪ boto3のcreate_deploymentを実行 デプロイに関して SageMaker Edge Managerを組み合わせたやり方も
ある気がしています まだよくわかっていないので、よければ情報交換 しましょう
@i7i5 通信周り ▪SORACOM ▪ SORACOM Air|通信 ▪ SORACOM Funnel|デバイスからのデータをAWSに直接転送 ▪SORACOMを使うメリット
▪ 顧客が通信環境をセットアップする必要がない ▪ デバイス側のプログラムをシンプルに ▪ SIMという一意のモノによる認証
Stucked Point ハマったポイント
@i7i5 ハマったポイント 発生した問題 ▪ Amplify: Resolver invocation limit reached. 原因
▪ 一部の深いネストのデータを取るためにAPIのdepthを7にしていた ▪ モデルの中に循環参照がある関係で、1回のQueryで取ってくるデータが とんでもないことに
@i7i5 ハマったポイント 発生した問題 ▪ Amplify: Resolver invocation limit reached. 原因
▪ 一部の深いネストのデータを取るためにAPIのdepthを7にしていた ▪ モデルの中に循環参照がある関係で、1回のQueryで取ってくるデータが とんでもないことに type Model @model @auth(rules: [{ allow: owner }]) { id: ID! name: String! status: ModelStatus! type: ModelType! images: [Image] @connection(keyName: "byModel", fields: ["id"]) ・ ・ } type Image @model @auth(rules: [{ allow: owner }]) @key(name: "byModel", fields: ["modelID"]) { id: ID! modelID: ID! model: Model @connection(fields: ["modelID"]) width: Int! height: Int! ext: String! objects: [Object] @connection(keyName: "byImage", fields: ["id"]) }
@i7i5
@i7i5 ハマったポイント いじわるポイント ▪ amplify mockした時はこのエラーが出ない 対策 ▪ depthをデフォルトの2に変更 ▪
必要に応じてGraphQL Explorerを使って 独自Queryを定義 副次的効果 ▪ パフォーマンス改善
Conclusion おわりに
@i7i5 まとめ ▪ノーコードエッジAIプラットフォーム ▪ Amplify ▪ SageMaker ▪ IoT Greengrass
▪エンジニア4人で約4か月でβ版開発 ▪ AWSという巨人の肩に乗って開発 ▪ テクニカルサポート ▪Graphqlのdepthと循環参照には注意⚠
@i7i5 宣伝ちょっとだけ JOIN US! ▪ フロント・機械学習・IoT・営業・オープンポジション ▪ 来春から東京を拠点に ▪ Meetyでカジュアル面談募集中
@i7i5