Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Fergal Reid - Building products in the age of Ai
Search
Turing Fest
PRO
July 05, 2023
Technology
0
170
Fergal Reid - Building products in the age of Ai
Turing Fest
PRO
July 05, 2023
Tweet
Share
More Decks by Turing Fest
See All by Turing Fest
Andy Budd: The Growth Equation: 7 Essential Steps to Finding Product Market Fit
turingfest
PRO
0
130
Andrey Vinitsky: Babe Are You OK? You've Barely Touched The Dashboard You Claimed Was Mission Critical
turingfest
PRO
0
89
Finbarr Taylor:From Scotland to Silicon Valley: Lessons Learned Raising $100m & Building a Global SaaS Business
turingfest
PRO
0
50
Megan Caywood: A Product Playbook to Building a Unicorn
turingfest
PRO
0
46
Jason Miller: Branding in the Age of AI
turingfest
PRO
0
63
Petra Wille: Lessons on Storytelling for Product Builders
turingfest
PRO
0
61
Meri Williams: Career Vectors: Navigating Modern Careers
turingfest
PRO
0
65
Todd Olson: How AI Supercharges Product-led Growth
turingfest
PRO
0
51
Rand Fishkin: Zero-Click Marketing
turingfest
PRO
0
81
Other Decks in Technology
See All in Technology
TechLION vol.41~MySQLユーザ会のほうから来ました / techlion41_mysql
sakaik
0
170
20250623 Findy Lunch LT Brown
3150
0
840
第9回情シス転職ミートアップ_テックタッチ株式会社
forester3003
0
220
生成AIで小説を書くためにプロンプトの制約や原則について学ぶ / prompt-engineering-for-ai-fiction
nwiizo
3
760
CSS、JSをHTMLテンプレートにまとめるフロントエンド戦略
d120145
0
280
監視のこれまでとこれから/sakura monitoring seminar 2025
fujiwara3
11
3.8k
SalesforceArchitectGroupOsaka#20_CNX'25_Report
atomica7sei
0
140
PostgreSQL 18 cancel request key長の変更とRailsへの関連
yahonda
0
120
原則から考える保守しやすいComposable関数設計
moriatsushi
3
530
AWS CDK 実践的アプローチ N選 / aws-cdk-practical-approaches
gotok365
6
690
GitHub Copilot の概要
tomokusaba
1
130
Amazon ECS & AWS Fargate 運用アーキテクチャ2025 / Amazon ECS and AWS Fargate Ops Architecture 2025
iselegant
16
5.3k
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
Statistics for Hackers
jakevdp
799
220k
Navigating Team Friction
lara
187
15k
Building Applications with DynamoDB
mza
95
6.5k
Why You Should Never Use an ORM
jnunemaker
PRO
56
9.4k
Automating Front-end Workflow
addyosmani
1370
200k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Fireside Chat
paigeccino
37
3.5k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.8k
GitHub's CSS Performance
jonrohan
1031
460k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Transcript
Building products in the Age of AI @fergal_reid
GPT / LLMs • Internet sized change • Change in
capability • Change in how we build and use AI
None
None
None
Level 1: GPTs are incredible! Level 2: GPTs make things
up and aren’t trustworthy. Level 3: GPTs can be incredible when used right
See them as engineering components Separate out aspects accidentally bundled
What is GPT?
Training objective: token prediction
Training objective: token prediction
None
None
• A sequence model • That uses ‘attention’ • Gradient
descent
• A sequence model • That uses ‘attention’ • Gradient
descent
Not a useful model • Human = genes and evolution
? • Distrust: ‘It de fi nitely can’t do X because its just trained to predict the next word’
Model: Database + Reasoning Engine • The reasoning engine is
key • Often, the database is a liability
Reasoning capabilities
None
None
Model: ‘Interpolative’ vs ‘Extrapolative’ tasks
None
• Less reliable at extrapolation • Favour interpolation • Perform
a task, given a context • ‘Retrieval Augmented Generation’
Model: Human intuition Ask a human to answer a historical
question vs Give them a history book and ask them the question
Note: Context window limited • Thousands of words • Can’t
put a whole KB, or context, in it • Synergizes well with Vector Search
How we build with GPTs
None
None
None
None
30 November 2022: ChatGPT
First features we built • Summarisation • Edit tone of
voice • Expand from shorthand
None
None
• 5th Dec: Rolling • 20th Dec: Internal use •
~13th Jan: Customer beta • 31st Jan: Launch with testimonials Timeline
Model: Easy vs Hard AI features
• ‘Easy’: • Out-of-box accuracy high • Cost of error
low • E.g. ‘Draft me a summary’
• ‘Hard’: • Out-of-box accuracy low • Cost of error
high
Development Tactics
• Fast customer contact • Assume you can build v1
of most ML with powerful LLM • Make cheap later • “LLMs aren’t all of AI” • How we build software has changed
Hard feature: Fin • GPT-powered question answering Bot
• An LLM can seem inert • However, can easily
be turned into an agent
My key points • Internet sized change • Good model:
DB+Reasoning • Changes how we build ML • Feature dif fi culty varies
Guessing what’s next
• V1: text tools, working around clunky interfaces • V2:
features reasoning can enhance • V?: End to end problems where intelligence can help • Don’t underestimate the reasoning capability, very sophisticated
• Breakneck progress • Smaller models, open? • Exciting but
overhyped today • Productisation • Larger models
Thank you! @fergal_reid