Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Fergal Reid - Building products in the age of Ai
Search
Turing Fest
PRO
July 05, 2023
Technology
0
190
Fergal Reid - Building products in the age of Ai
Turing Fest
PRO
July 05, 2023
Tweet
Share
More Decks by Turing Fest
See All by Turing Fest
Andy Budd: The Growth Equation: 7 Essential Steps to Finding Product Market Fit
turingfest
PRO
0
150
Andrey Vinitsky: Babe Are You OK? You've Barely Touched The Dashboard You Claimed Was Mission Critical
turingfest
PRO
0
98
Finbarr Taylor:From Scotland to Silicon Valley: Lessons Learned Raising $100m & Building a Global SaaS Business
turingfest
PRO
0
71
Megan Caywood: A Product Playbook to Building a Unicorn
turingfest
PRO
0
50
Jason Miller: Branding in the Age of AI
turingfest
PRO
0
74
Petra Wille: Lessons on Storytelling for Product Builders
turingfest
PRO
0
76
Meri Williams: Career Vectors: Navigating Modern Careers
turingfest
PRO
0
100
Todd Olson: How AI Supercharges Product-led Growth
turingfest
PRO
0
64
Rand Fishkin: Zero-Click Marketing
turingfest
PRO
0
86
Other Decks in Technology
See All in Technology
【Kaigi on Rails 事後勉強会LT】MeはどうしてGirlsに? 私とRubyを繋いだRail(s)
joyfrommasara
0
230
20251007: What happens when multi-agent systems become larger? (CyberAgent, Inc)
ornew
1
240
"プロポーザルってなんか怖そう"という境界を超えてみた@TSUDOI by giftee Tech #1
shilo113
0
180
業務効率化をさらに加速させる、ノーコードツールとStep Functionsのハイブリッド化
smt7174
2
130
サイバーエージェント流クラウドコスト削減施策「みんなで金塊堀太郎」
kurochan
0
200
速習AGENTS.md:5分で精度を上げる "3ブロック" テンプレ
ismk
6
1.1k
自動テストのコストと向き合ってみた
qa
1
220
[Codex Meetup Japan #1] Codex-Powered Mobile Apps Development
korodroid
2
460
「使い方教えて」「事例教えて」じゃもう遅い! Microsoft 365 Copilot を触り倒そう!
taichinakamura
0
360
Reflections of AI: A Trilogy in Four Parts (GOTO; Copenhagen 2025)
ondfisk
0
110
大規模サーバーレスAPIの堅牢性・信頼性設計 〜AWSのベストプラクティスから始まる現実的制約との向き合い方〜
maimyyym
8
4.4k
Shirankedo NOCで見えてきたeduroam/OpenRoaming運用ノウハウと課題 - BAKUCHIKU BANBAN #2
marokiki
0
190
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
114
20k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
Fireside Chat
paigeccino
40
3.7k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
19
1.2k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Building a Scalable Design System with Sketch
lauravandoore
463
33k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Site-Speed That Sticks
csswizardry
11
900
The Power of CSS Pseudo Elements
geoffreycrofte
79
6k
Transcript
Building products in the Age of AI @fergal_reid
GPT / LLMs • Internet sized change • Change in
capability • Change in how we build and use AI
None
None
None
Level 1: GPTs are incredible! Level 2: GPTs make things
up and aren’t trustworthy. Level 3: GPTs can be incredible when used right
See them as engineering components Separate out aspects accidentally bundled
What is GPT?
Training objective: token prediction
Training objective: token prediction
None
None
• A sequence model • That uses ‘attention’ • Gradient
descent
• A sequence model • That uses ‘attention’ • Gradient
descent
Not a useful model • Human = genes and evolution
? • Distrust: ‘It de fi nitely can’t do X because its just trained to predict the next word’
Model: Database + Reasoning Engine • The reasoning engine is
key • Often, the database is a liability
Reasoning capabilities
None
None
Model: ‘Interpolative’ vs ‘Extrapolative’ tasks
None
• Less reliable at extrapolation • Favour interpolation • Perform
a task, given a context • ‘Retrieval Augmented Generation’
Model: Human intuition Ask a human to answer a historical
question vs Give them a history book and ask them the question
Note: Context window limited • Thousands of words • Can’t
put a whole KB, or context, in it • Synergizes well with Vector Search
How we build with GPTs
None
None
None
None
30 November 2022: ChatGPT
First features we built • Summarisation • Edit tone of
voice • Expand from shorthand
None
None
• 5th Dec: Rolling • 20th Dec: Internal use •
~13th Jan: Customer beta • 31st Jan: Launch with testimonials Timeline
Model: Easy vs Hard AI features
• ‘Easy’: • Out-of-box accuracy high • Cost of error
low • E.g. ‘Draft me a summary’
• ‘Hard’: • Out-of-box accuracy low • Cost of error
high
Development Tactics
• Fast customer contact • Assume you can build v1
of most ML with powerful LLM • Make cheap later • “LLMs aren’t all of AI” • How we build software has changed
Hard feature: Fin • GPT-powered question answering Bot
• An LLM can seem inert • However, can easily
be turned into an agent
My key points • Internet sized change • Good model:
DB+Reasoning • Changes how we build ML • Feature dif fi culty varies
Guessing what’s next
• V1: text tools, working around clunky interfaces • V2:
features reasoning can enhance • V?: End to end problems where intelligence can help • Don’t underestimate the reasoning capability, very sophisticated
• Breakneck progress • Smaller models, open? • Exciting but
overhyped today • Productisation • Larger models
Thank you! @fergal_reid