Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
楕円曲線の有理点と BSD 予想
Search
Naoya Umezaki
October 06, 2018
0
1.1k
楕円曲線の有理点と BSD 予想
MATHPOWER2018での講演スライド。 BSD予想についての解説。
Naoya Umezaki
October 06, 2018
Tweet
Share
More Decks by Naoya Umezaki
See All by Naoya Umezaki
証明支援系LEANに入門しよう
unaoya
0
1.2k
ミケル点とべズーの定理
unaoya
0
980
すうがく徒のつどい@オンライン「ラマヌジャンのデルタ」
unaoya
0
690
合同式と幾何学
unaoya
0
2.2k
すうがく徒のつどい@オンライン「ヴェイユ予想とl進層のフーリエ変換」
unaoya
0
870
Egisonパターンマッチによる彩色
unaoya
1
610
関数等式と双対性
unaoya
1
800
直交多項式と表現論
unaoya
0
900
導来代数幾何入門
unaoya
0
1k
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
173
14k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.3k
Navigating Team Friction
lara
187
15k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
108
19k
Thoughts on Productivity
jonyablonski
69
4.7k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.6k
Documentation Writing (for coders)
carmenintech
72
4.9k
RailsConf 2023
tenderlove
30
1.2k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
47
9.6k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
Transcript
ପԁۂઢͷ༗ཧͱBSD༧ ക࡚@unaoya ͢͏͕͘ͿΜ͔ɺཧۭؒ τ ´ oπoζ MATHPOWER2018 10/6
ฏํͱཱํ ฏํ 1, 4, 9, 16, 25, 36, 49, 64,
. . . ཱํ 1, 8, 27, 64, 125, 216, 343, 512, . . . ฏํͱཱํͷ͕ࠩ1 ฏํͱཱํʹڬ·Εͨ།Ұͷ26
ପԁۂઢ y2 = x3 + 1, (x, y) = (2,
3) y2 = x3 − 2, (x, y) = (3, 5) ༗ཧ x, y ࠲ඪ͕༗ཧͳ
༗ཧͷ܈ P Q R P+Q P, Q ͕༗ཧ ઢPQ ༗ཧ
R ༗ཧ P + Q ༗ཧ
༗ཧͷ܈ P Q 2P P ͕༗ཧ ઢ༗ཧ Q ༗ཧ 2P
༗ཧ
y2 = x3 + 1 P Q R P+Q P
= (−1, 0), Q = (0, 1) PQ : y = x + 1 (x + 1)2 = x3 + 1 x = −1, 0, 2 R = (2, 3), P + Q = (2, −3)
y2 = x3 + 1 P Q 2P P =
(2, 3) yy′ = 3x2 ઢ y = 2(x − 2) + 3 = 2x − 1 (2x − 1)2 = x3 + 1 x = 0, 2 Q = (0, −1), 2P = (0, 1)
y2 = x3 + 1 P Q R P +
Q y2 = x3 + 1ͷ༗ཧ (−1, 0), (0, ±1), (2, ±3), O ͷ6ݸɻ
y2 = x3 − 2 P = (3, 5) 2P
= (129/100, −383/1000) 3P = (164323/29241, −66234835/5000211) 4P = (2340922881/58675600, 113259286337279/44945509600) ༗ཧnP ͷΈ
y2 = x3 − 17x P = (−1, 4) 2P
= (1089/16, −35871/64) 3P = (−4169764/1329409, 7264943878/1532808577) 4P = (1416749814529/82350633024, − 1637173839697065089/23631996457631232)
y2 = x3 − 17x Q = (−4, 2) 2Q
= (81/16, 423/64) 3Q = (−36481/9409, −2520436/912673) 4Q = (119093569/11451456, − 1193164200991/38751727104)
y2 = x3 − 17x R = (0, 0) 2R
= O ༗ཧnP + mQ, nP + mQ + R Ͱશͯɻ
ϞʔσϧϰΣΠϢ֊ ༗ཧͷʢແݶ෦ͷʣ࠷খͷੜݩͷݸ 1. y2 = x3 + 1ϞʔσϧϰΣΠϢ֊0 2. y2
= x3 − 2nP ͷܗͳͷͰϞʔσϧ ϰΣΠϢ֊1 3. y2 = x3 − 17x nP + mQ ͷܗͳͷͰ ϞʔσϧϰΣΠϢ֊2
mod pͷͷݸ ପԁۂઢE ͷ mod p ͷͷݸNp (E)Λ ͑Δɻ
E : y2 = x3 + 1 N3 (E) mod
3Ͱ (x, y) = (0, 0), (1, 0), (0, 1), (1, 1) 02 ̸= 03 + 1 02 = 13 + 1 12 = 03 + 1 12 ̸= 13 + 1
E : y2 = x3 + 1 N3 (E) mod
2Ͱx = 0, 1, 2, y = 0, 1, 2 12 = 03 + 1, 22 = 03 + 1, 02 = 23 + 1 ͷ3ͭʹແݶԕΛՃ͑ͯ N3 (E) = 4
E : y2 = x3 + 1 ∏ p Np
(E) p Λߟ͑Δɻ N2 (E) 2 , N2 (E) 2 N3 (E) 3 , N2 (E) 2 N3 (E) 3 N5 (E) 5 , . . .
E : y2 = x3 + 1
E : y2 = x3 − 2
E : y2 = x3 − 17x
∏ Np(E)/p
Lؔ L(s, E) = ∏ p 1 1 − (1
+ p − Np (E))p−s + p1−2s ϦʔϚϯθʔλؔͷପԁۂઢ൛ ζ(s) = ∏ p 1 1 − p−s
Lؔ L(1, E) = ∏ p 1 1 − (1
+ p − Np (E))p−1 + p1−2 = ∏ p 1 1 − p−1 − 1 + Np (E)p−1 + p−1 = ∏ p 1 Np (E)/p
Birch and Swinnerton-Dyer༧ ▶ L(s, E)ͷs = 1Ͱͷॏෳͱ E ͷϞʔσϧϰΣΠϢ֊͕͍͠
▶ L(1, E) ̸= 0 ⇐⇒ ༗ཧ͕༗ݶ ෦తղܾ͋Γɻ શʹղ͍ͨΒ100ສυϧ.ɻ
ࢀߟจݙ 1. ాޱ༤Ұ, ༗ཧͷ 2. Birch and Swinnerton-Dyer, Notes on
elliptic curves. II.