Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
楕円曲線の有理点と BSD 予想
Search
Naoya Umezaki
October 06, 2018
0
1k
楕円曲線の有理点と BSD 予想
MATHPOWER2018での講演スライド。 BSD予想についての解説。
Naoya Umezaki
October 06, 2018
Tweet
Share
More Decks by Naoya Umezaki
See All by Naoya Umezaki
証明支援系LEANに入門しよう
unaoya
0
630
ミケル点とべズーの定理
unaoya
0
860
すうがく徒のつどい@オンライン「ラマヌジャンのデルタ」
unaoya
0
640
合同式と幾何学
unaoya
0
2.2k
すうがく徒のつどい@オンライン「ヴェイユ予想とl進層のフーリエ変換」
unaoya
0
830
Egisonパターンマッチによる彩色
unaoya
1
580
関数等式と双対性
unaoya
1
760
直交多項式と表現論
unaoya
0
860
導来代数幾何入門
unaoya
0
950
Featured
See All Featured
We Have a Design System, Now What?
morganepeng
51
7.4k
The Language of Interfaces
destraynor
156
24k
It's Worth the Effort
3n
184
28k
Building Adaptive Systems
keathley
40
2.4k
Producing Creativity
orderedlist
PRO
344
39k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.1k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
Building Flexible Design Systems
yeseniaperezcruz
328
38k
Bash Introduction
62gerente
611
210k
BBQ
matthewcrist
87
9.5k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.3k
A Philosophy of Restraint
colly
203
16k
Transcript
ପԁۂઢͷ༗ཧͱBSD༧ ക࡚@unaoya ͢͏͕͘ͿΜ͔ɺཧۭؒ τ ´ oπoζ MATHPOWER2018 10/6
ฏํͱཱํ ฏํ 1, 4, 9, 16, 25, 36, 49, 64,
. . . ཱํ 1, 8, 27, 64, 125, 216, 343, 512, . . . ฏํͱཱํͷ͕ࠩ1 ฏํͱཱํʹڬ·Εͨ།Ұͷ26
ପԁۂઢ y2 = x3 + 1, (x, y) = (2,
3) y2 = x3 − 2, (x, y) = (3, 5) ༗ཧ x, y ࠲ඪ͕༗ཧͳ
༗ཧͷ܈ P Q R P+Q P, Q ͕༗ཧ ઢPQ ༗ཧ
R ༗ཧ P + Q ༗ཧ
༗ཧͷ܈ P Q 2P P ͕༗ཧ ઢ༗ཧ Q ༗ཧ 2P
༗ཧ
y2 = x3 + 1 P Q R P+Q P
= (−1, 0), Q = (0, 1) PQ : y = x + 1 (x + 1)2 = x3 + 1 x = −1, 0, 2 R = (2, 3), P + Q = (2, −3)
y2 = x3 + 1 P Q 2P P =
(2, 3) yy′ = 3x2 ઢ y = 2(x − 2) + 3 = 2x − 1 (2x − 1)2 = x3 + 1 x = 0, 2 Q = (0, −1), 2P = (0, 1)
y2 = x3 + 1 P Q R P +
Q y2 = x3 + 1ͷ༗ཧ (−1, 0), (0, ±1), (2, ±3), O ͷ6ݸɻ
y2 = x3 − 2 P = (3, 5) 2P
= (129/100, −383/1000) 3P = (164323/29241, −66234835/5000211) 4P = (2340922881/58675600, 113259286337279/44945509600) ༗ཧnP ͷΈ
y2 = x3 − 17x P = (−1, 4) 2P
= (1089/16, −35871/64) 3P = (−4169764/1329409, 7264943878/1532808577) 4P = (1416749814529/82350633024, − 1637173839697065089/23631996457631232)
y2 = x3 − 17x Q = (−4, 2) 2Q
= (81/16, 423/64) 3Q = (−36481/9409, −2520436/912673) 4Q = (119093569/11451456, − 1193164200991/38751727104)
y2 = x3 − 17x R = (0, 0) 2R
= O ༗ཧnP + mQ, nP + mQ + R Ͱશͯɻ
ϞʔσϧϰΣΠϢ֊ ༗ཧͷʢແݶ෦ͷʣ࠷খͷੜݩͷݸ 1. y2 = x3 + 1ϞʔσϧϰΣΠϢ֊0 2. y2
= x3 − 2nP ͷܗͳͷͰϞʔσϧ ϰΣΠϢ֊1 3. y2 = x3 − 17x nP + mQ ͷܗͳͷͰ ϞʔσϧϰΣΠϢ֊2
mod pͷͷݸ ପԁۂઢE ͷ mod p ͷͷݸNp (E)Λ ͑Δɻ
E : y2 = x3 + 1 N3 (E) mod
3Ͱ (x, y) = (0, 0), (1, 0), (0, 1), (1, 1) 02 ̸= 03 + 1 02 = 13 + 1 12 = 03 + 1 12 ̸= 13 + 1
E : y2 = x3 + 1 N3 (E) mod
2Ͱx = 0, 1, 2, y = 0, 1, 2 12 = 03 + 1, 22 = 03 + 1, 02 = 23 + 1 ͷ3ͭʹແݶԕΛՃ͑ͯ N3 (E) = 4
E : y2 = x3 + 1 ∏ p Np
(E) p Λߟ͑Δɻ N2 (E) 2 , N2 (E) 2 N3 (E) 3 , N2 (E) 2 N3 (E) 3 N5 (E) 5 , . . .
E : y2 = x3 + 1
E : y2 = x3 − 2
E : y2 = x3 − 17x
∏ Np(E)/p
Lؔ L(s, E) = ∏ p 1 1 − (1
+ p − Np (E))p−s + p1−2s ϦʔϚϯθʔλؔͷପԁۂઢ൛ ζ(s) = ∏ p 1 1 − p−s
Lؔ L(1, E) = ∏ p 1 1 − (1
+ p − Np (E))p−1 + p1−2 = ∏ p 1 1 − p−1 − 1 + Np (E)p−1 + p−1 = ∏ p 1 Np (E)/p
Birch and Swinnerton-Dyer༧ ▶ L(s, E)ͷs = 1Ͱͷॏෳͱ E ͷϞʔσϧϰΣΠϢ֊͕͍͠
▶ L(1, E) ̸= 0 ⇐⇒ ༗ཧ͕༗ݶ ෦తղܾ͋Γɻ શʹղ͍ͨΒ100ສυϧ.ɻ
ࢀߟจݙ 1. ాޱ༤Ұ, ༗ཧͷ 2. Birch and Swinnerton-Dyer, Notes on
elliptic curves. II.