Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
四元数と回転 / Quaternion Rotation
Search
USAMI Kosuke
January 22, 2022
Science
0
960
四元数と回転 / Quaternion Rotation
※ Docswell に移行しました
https://www.docswell.com/s/usami-k/K8G9EX-quaternion-rotation
USAMI Kosuke
January 22, 2022
Tweet
Share
More Decks by USAMI Kosuke
See All by USAMI Kosuke
Onsager代数とその周辺 / Onsager algebra tsudoi
usamik26
0
650
Apple HIG 正式名称クイズ結果発表 / HIG Quiz Result
usamik26
0
200
ゆめみ大技林製作委員会の立ち上げの話 / daigirin project
usamik26
0
340
@ViewLoadingプロパティラッパの紹介と自前で実装する方法 / @ViewLoading property wrapper implementation
usamik26
0
500
これからUICollectionViewを実践活用する人のためのガイド / Guide to UICollectionView
usamik26
1
760
Xcodeとの最近の付き合い方のはなし / Approach To Xcode
usamik26
2
690
UICollectionView Compositional Layout
usamik26
0
810
Coding Swift with Visual Studio Code and Docker
usamik26
0
530
Swift Extension for Visual Studio Code
usamik26
2
1.1k
Other Decks in Science
See All in Science
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
660
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
1
150
システム数理と応用分野の未来を切り拓くロードマップ・エンターテインメント(スポーツ)への応用 / Applied mathematics for sports entertainment
konakalab
1
410
Lean4による汎化誤差評価の形式化
milano0017
1
340
DMMにおけるABテスト検証設計の工夫
xc6da
1
1.1k
生成検索エンジン最適化に関する研究の紹介
ynakano
2
1.4k
機械学習 - pandas入門
trycycle
PRO
0
330
学術講演会中央大学学員会府中支部
tagtag
0
310
データマイニング - コミュニティ発見
trycycle
PRO
0
160
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
290
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
150
Featured
See All Featured
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
230
22k
The Invisible Side of Design
smashingmag
302
51k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Designing for Performance
lara
610
69k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
KATA
mclloyd
PRO
32
15k
Bash Introduction
62gerente
615
210k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
Transcript
1/15 四元数と回転 宇佐見 公輔 2022 年 1 月 22 日
宇佐見 公輔 四元数と回転
2/15 自己紹介 宇佐見 公輔(うさみ こうすけ) 職業:プログラマ 趣味:数学 今日の話に関連する過去の登壇: 四元数のはなし(2020 年
5 月 / 関西日曜数学友の会) 八元数のはなし(2021 年 10 月 / 日曜数学会) 宇佐見 公輔 四元数と回転
3/15 自己紹介 近況: 今年から、株式会社ゆめみ所属 ゆめみメンバーによるグループ Liberal Arts Lab の紹介: 2
月 3 日:タカタ先生のお笑い数学全史・第十四章 produced by Liberal Arts Lab × 日本お笑い数学協会 2 月 24 日: 「僕の本、こう活かそう!」〜数学のお兄さんの 書籍を使った算数・数学の学び方〜 produced by Liberal Arts Lab × 日本お笑い数学協会 宇佐見 公輔 四元数と回転
4/15 四元数とは 四元数 𝑥0 + 𝑥1 i + 𝑥2 j
+ 𝑥3 k(𝑥𝑖 ∈ ℝ)とあらわされる数。 i2 = j2 = k2 = −1 ij = −ji = k, jk = −kj = i, ki = −ik = j 加減乗除が可能(特に除法が可能) 。 分配法則、結合法則、加法の交換法則が成り立つ。 乗法の交換法則が成り立たない。 宇佐見 公輔 四元数と回転
5/15 四元数の大きさ 四元数の大きさ(絶対値) 𝑥 = 𝑥0 + 𝑥1 i +
𝑥2 j + 𝑥3 k(𝑥𝑖 ∈ ℝ)の大きさ |𝑥| は、 |𝑥| = √𝑥2 0 + 𝑥2 1 + 𝑥2 2 + 𝑥2 3 で、大きさは乗法によって保たれる。 |𝑥𝑦| = |𝑥||𝑦| ハミルトンは、この性質が成り立つようなものを探した結 果、三元数を作ることはできず、四元数になった。 宇佐見 公輔 四元数と回転
6/15 2 次元平面上の回転 2 次元平面上の回転 複素数 𝑥 = 𝑥0 +
𝑥1 i に大きさ 1 の複素数 𝑞 をかける操作は、2 次 元平面上の回転をあらわす。 𝑥 ↦ 𝑞𝑥 |𝑞𝑥| = |𝑞||𝑥| = |𝑥| なので原点からの距離が保たれる。 宇佐見 公輔 四元数と回転
7/15 4 次元空間上の回転 4 次元空間上の回転 四元数 𝑥 = 𝑥0 +
𝑥1 i + 𝑥2 j + 𝑥3 k に大きさ 1 の四元数 𝑞 をかける操 作は、4 次元空間上の回転をあらわす。 𝑥 ↦ 𝑞𝑥 |𝑞𝑥| = |𝑞||𝑥| = |𝑥| なので原点からの距離が保たれる。 宇佐見 公輔 四元数と回転
8/15 3 次元空間を考える ハミルトンは 3 次元空間上の回転を表現する方法が欲しかったの だが、三元数は作れなかった。 四元数は 4 次元空間の点に対応する。
𝑥0 + 𝑥1 i + 𝑥2 j + 𝑥3 k ↔ (𝑥0 , 𝑥1 , 𝑥2 , 𝑥3 ) 四元数の虚数部だけを使うことにして(純虚四元数) 、3 次元空間 と対応するようにしてみる。 𝑥1 i + 𝑥2 j + 𝑥3 k ↔ (𝑥1 , 𝑥2 , 𝑥3 ) 宇佐見 公輔 四元数と回転
9/15 純虚四元数 純虚四元数は残念ながら乗法で閉じていない。 (𝑥1 i + 𝑥2 j + 𝑥3
k)(𝑦1 i + 𝑦2 j + 𝑦3 k) = − (𝑥1 𝑦1 + 𝑥2 𝑦2 + 𝑥3 𝑦3 ) + (𝑥2 𝑦3 − 𝑥3 𝑦2 )i + (𝑥3 𝑦1 − 𝑥1 𝑦3 )j + (𝑥1 𝑦2 − 𝑥2 𝑦1 )k そのため、単純に乗法で 3 次元空間上の回転を表現することはで きない。 宇佐見 公輔 四元数と回転
10/15 3 次元空間上の回転 実は次のように表現することができる。 3 次元空間上の回転 純虚四元数 𝑥 = 𝑥1
i + 𝑥2 j + 𝑥3 k に対して、大きさ 1 の四元数 𝑞 を 使った次の操作は、3 次元空間上の回転をあらわす。 𝑥 ↦ 𝑞𝑥𝑞−1 𝑞𝑥𝑞−1 は純虚四元数になる。 宇佐見 公輔 四元数と回転
11/15 3 次元空間上の回転とは 3 次元空間上での回転を少し噛み砕いて考えてみる。 2 次元平面上の原点中心の回転は、角度だけで決まっていた。 3 次元空間上の原点中心の回転は、それに加えて「どの方向に回 転させるか」の情報がないと決まらない。言い方を変えると、
「ど の平面上で回転させるか」とも言える。 つまり、3 次元空間上の原点中心の回転は、平面を指定する法線 ベクトル 𝑛 と、その平面上で回転させる角度 𝜃 との 2 つの情報で 決まる。 (こういうことをビジュアライズする能力が欲しい・・・) 宇佐見 公輔 四元数と回転
12/15 3 次元空間上の回転(再) 3 次元空間上の回転 点 𝑋 = (𝑥1 ,
𝑥2 , 𝑥3 ) を法線ベクトル 𝑛 = (𝑛1 , 𝑛2 , 𝑛3 )(ただし |𝑛| = 1 とする)で決まる平面上を 𝜃 だけ回転させる操作を考える。 純虚四元数 𝑥 = 𝑥1 i + 𝑥2 j + 𝑥3 k に対して、大きさ 1 の四元数 𝑞 = cos 𝜃 2 + (sin 𝜃 2 ) (𝑛1 i + 𝑛2 j + 𝑛3 k) を使った次の操作 𝑥 ↦ 𝑞𝑥𝑞−1 は、上述の 3 次元空間上の回転をあらわす。 宇佐見 公輔 四元数と回転
13/15 3 次元空間上の回転の不思議 実際に回転であることの説明はここではしないけれど、3 次元空 間の点と純虚四元数との対応を念頭に置いて、変換 𝑥 ↦ 𝑞𝑥𝑞−1 が
回転になっているらしいというのを飲み込んだとして。 さらに考えてみると、大きさ 1 の四元数を集めた集合は、乗法で 群をなす。𝑥 ↦ 𝑞𝑥𝑞−1 という操作は、群の言葉でいえば共役をと る操作。純虚四元数に対して、大きさ 1 の四元数の群の元で共役 をとるのが、回転変換あるいは鏡映変換に対応すると考えられる。 それでも、𝑥 ↦ 𝑞𝑥𝑞−1 という操作は、ちょっと不思議な感じが する。 宇佐見 公輔 四元数と回転
14/15 3 次元空間上の回転の不思議 𝑥 と 𝑞𝑥𝑞−1 は純虚四元数であり、3 次元空間の点と対応している。 しかしその過程で出てくる 𝑞𝑥
あるいは 𝑥𝑞−1 は純虚四元数では ない。 つまり、3 次元空間上の回転をあらわすために、一度 4 次元の世 界に飛び出している。 左から 𝑞 をかける操作で、実軸方向に (𝑞|𝑥) だけずれた世界で、外 積 𝑞 × 𝑥 をとる。 そこに右から 𝑞−1 をかける操作で、実軸方向にずらして元の世界 に戻ってきて、外積をとる。 これが実は回転になっているというのである。不思議な感じがし ませんか? 宇佐見 公輔 四元数と回転
15/15 参考文献 結論的な話がない感じですが、参考文献を挙げておきます。 これらには先ほどの操作が 3 次元空間をあらわすことの証明や説 明が書かれています。 松岡 学「数の世界 自然数から実数、複素数、そして四元数
へ」講談社ブルーバックス 矢野 忠「四元数の発見」海鳴社 今野 紀雄「四元数」森北出版 宇佐見 公輔 四元数と回転