Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データマイニング - ノードの中心性
Search
Y. Yamamoto
PRO
June 27, 2025
Science
0
260
データマイニング - ノードの中心性
1. 近接中心性
2. 次数中心性
3. 固有ベクトル中心性
4. 媒介中心性
Y. Yamamoto
PRO
June 27, 2025
Tweet
Share
More Decks by Y. Yamamoto
See All by Y. Yamamoto
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
330
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
430
データマイニング - グラフ埋め込み入門
trycycle
PRO
0
62
データマイニング - ウェブとグラフ
trycycle
PRO
0
160
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
950
データマイニング - コミュニティ発見
trycycle
PRO
0
140
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
930
データベース10: 拡張実体関連モデル
trycycle
PRO
0
970
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
160
Other Decks in Science
See All in Science
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.1k
mathematics of indirect reciprocity
yohm
1
160
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
190
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
170
深層学習を用いた根菜類の個数カウントによる収量推定法の開発
kentaitakura
0
180
01_篠原弘道_SIPガバニングボード座長_ポスコロSIPへの期待.pdf
sip3ristex
0
630
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
11
2.3k
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
250
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.7k
Masseyのレーティングを用いたフォーミュラレースドライバーの実績評価手法の開発 / Development of a Performance Evaluation Method for Formula Race Drivers Using Massey Ratings
konakalab
0
180
点群ライブラリPDALをGoogleColabにて実行する方法の紹介
kentaitakura
1
360
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
600
Featured
See All Featured
Documentation Writing (for coders)
carmenintech
73
5k
Mobile First: as difficult as doing things right
swwweet
223
9.9k
Thoughts on Productivity
jonyablonski
69
4.8k
Side Projects
sachag
455
43k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Facilitating Awesome Meetings
lara
55
6.5k
For a Future-Friendly Web
brad_frost
179
9.9k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
Making the Leap to Tech Lead
cromwellryan
134
9.5k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
Transcript
ノードの中心性 ⼭本 祐輔 名古屋市⽴⼤学 データサイエンス研究科
[email protected]
第11回 データマイニング (グラフ分析入門) ⼭本祐輔
クリエイティブコモンズライセンス (CC BY-NC-SA 4.0)
グラフを「把握したい」ケース グラフを把握したい ノード 単体 グラフの 部分構造 グラフ 全体 局所的特徴 ⼤局的特徴
グラフを「把握したい」ケース グラフを把握したい グラフ 全体 局所的特徴 ⼤局的特徴 ノードの重要性評価はグラフ分析の典型的タスク グラフの 部分構造 ノード
単体
ノードの中⼼性 § グラフにおける各ノードの重要度を⽰す指数 § 重要ノードの発⾒やノードの順序づけなどに利⽤ § 中⼼性の⼤きさはグラフ構造に基づき計算される どのくらい重要? どちらが重要?
さまざまな中⼼性(⼀部) 近接中心性 他のノードに最も近いノードは? 次数中心性 多くのノードと接続しているノードは? 固有ベクトル中心性 重要なノードと多く接続しているノードは? 媒介中心性 他のノードへの橋渡し役として重要なノードは? グラフの何に注⽬したいかによって⽤いる中⼼性は変わる
さまざまな中⼼性(⼀部) 近接中心性 他のノードに最も近いノードは? 次数中心性 多くのノードと接続しているノードは? 固有ベクトル中心性 重要なノードと多く接続しているノードは? 媒介中心性 他のノードへの橋渡し役として重要なノードは? グラフの何に注⽬したいかによって⽤いる中⼼性は変わる
近接中⼼性 (closeness centrality) (1/5) 注目ノードとグラフ中の他のノードとの 距離が平均的にどの程度近いかを示す指標 0 2 1 3
4 5 1 2 2 1 1 𝐶! 𝑣" = 1 𝑣" からの平均距離 = |𝑉| − 1 ∑#! 𝑑𝑖𝑠𝑡(𝑣" , 𝑣$ )
近接中⼼性 (closeness centrality) (2/5) 注目ノードとグラフ中の他のノードとの 距離が平均的にどの程度近いかを示す指標 逆数をとって 距離が近いと 値が⼤きくなるように 0
2 1 3 4 5 1 2 2 1 1 𝐶! 𝑣" = 1 𝑣" からの平均距離 = |𝑉| − 1 ∑#! 𝑑𝑖𝑠𝑡(𝑣" , 𝑣$ )
近接中⼼性 (closeness centrality) (3/5) 注目ノードとグラフ中の他のノードとの 距離が平均的にどの程度近いかを示す指標 ⾃分を除いたノードの数 0 2 1
3 4 5 1 2 2 1 1 近接中⼼性は連結グラフにしか定義ができないことに注意 𝐶! 𝑣" = 1 𝑣" からの平均距離 = |𝑉| − 1 ∑#! 𝑑𝑖𝑠𝑡(𝑣" , 𝑣$ )
近接中⼼性 (closeness centrality) (4/5) 注目ノードとグラフ中の他のノードとの 距離が平均的にどの程度近いかを示す指標 0 2 1 3
4 5 1 2 2 1 1 0 2 1 3 4 5 1 2 3 4 3 𝐶! 𝑣% = 5 7 𝐶! 𝑣& = 5 13
近接中⼼性 (closeness centrality) (5/5) 注目ノードとグラフ中の他のノードとの 距離が平均的にどの程度近いかを示す指標 0 2 1 3
4 5 1 2 2 1 1 𝐶! 𝑣% = 5 7 # 近接中⼼性 cc = nx.closeness_centrality(G) # ノード2の値 print(cc[2])
さまざまな中⼼性(⼀部) 近接中心性 他のノードに最も近いノードは? 次数中心性 多くのノードと接続しているノードは? 固有ベクトル中心性 重要なノードと多く接続しているノードは? 媒介中心性 他のノードへの橋渡し役として重要なノードは?
次数中⼼性 (degree centrality) (1/4) 注目ノードがいくつのノードと接しているか (どの程度エッジを持つか)を示す指標 0 2 1 3
4 5 𝐶' 𝑣" = deg(𝑣" ) 𝐶' 𝑣" = deg(𝑣" ) 𝑉 − 1 or ノードvi につながる エッジの数 𝐶' 𝑣% = 3
次数中⼼性 (degree centrality) (2/4) 注目ノードがいくつのノードと接しているか (どの程度エッジを持つか)を示す指標 0 2 1 3
4 5 𝐶' 𝑣" = deg(𝑣" ) 𝐶' 𝑣" = deg(𝑣" ) 𝑉 − 1 or グラフに属するノードの数で 正規化することもある 𝐶' 𝑣% = 3
次数中⼼性 (degree centrality) (3/4) 注目ノードがいくつのノードと接しているか (どの程度エッジを持つか)を示す指標 0 2 1 3
4 5 𝐶' 𝑣% = 3 # 次数中⼼性(正規化済み) nx.degree_centrality(G) # 次数中⼼性(正規化なし: 単なる次数) G.degree
次数中⼼性 (degree centrality) (4/4) 有向グラフの場合、次数中心性を 入次数と出次数に分けて考えることもある ⼊次数 = 3 0
2 1 3 4 5 0 2 1 3 4 5 出次数 = 0 ⼊次数 = 1 出次数 = 2
エッジの本数が多い = 重要なノード? 次数 = 3 次数 = 3 エッジの意味が友好関係としたとき、
影響力が強そうなはどちらのノードか? ノードの数も重要だが,どんなノードとつながっているかも重要?
さまざまな中⼼性(⼀部) 近接中心性 他のノードに最も近いノードは? 次数中心性 多くのノードと接続しているノードは? 固有ベクトル中心性 重要なノードと多く接続しているノードは? 媒介中心性 他のノードへの橋渡し役として重要なノードは?
固有ベクトル中⼼性 (eigenvector centrality) (1/14) 堂々巡りの定義になっているけど,どうするの…? 重要なノードに多く接しているノードほど 重要であるとする指標 0 3 1
2 重要度 = 1 重要度 = 1 重要度 = 1 重要度 = 1
固有ベクトル中⼼性 (eigenvector centrality) (2/14) 重要なノードに多く接しているノードほど 重要であるとする指標 0 3 1 2
重要度 = 1 重要度 = 1 重要度 = 1 重要度 = 1 とりあえず全てのノードの重要性を1として定義通り計算してみる…
固有ベクトル中⼼性 (eigenvector centrality) (3/14) 重要なノードに多く接しているノードほど 重要であるとする指標 0 3 1 2
重要度 = 1 重要度 = 1 重要度 = 1 𝑐( 𝑣) = 𝑐( 𝑣* + 𝑐( 𝑣% + 𝑐( 𝑣+ = 1 + 1 + 1 = 3 重要度 = 3 他のノードにも同じことをしてみる
0 固有ベクトル中⼼性 (eigenvector centrality) (4/14) 重要なノードに多く接しているノードほど 重要であるとする指標 3 1 2
重要度 = 2 重要度 = 1 重要度 = 1 重要度 = 1 𝑐( 𝑣+ = 𝑐( 𝑣) + 𝑐( (𝑣% ) = 1 + 1 = 2
固有ベクトル中⼼性 (eigenvector centrality) (5/14) 重要なノードに多く接しているノードほど 重要であるとする指標 0 3 1 2
重要度 = 1→2 同じことを再度繰り返してみる 重要度 = 1→1 重要度 = 1→2 重要度 = 1→3
固有ベクトル中⼼性 (eigenvector centrality) (6/14) 重要なノードに多く接しているノードほど 重要であるとする指標 0 3 1 2
同じことを再度繰り返してみる そのまま繰り返すと重要度が無限に 増えていくので、各ノードの重要度の 二乗和が1になるよう制約を加える 重要度 = 1→2 重要度 = 1→1 重要度 = 1→2 重要度 = 1→3 𝟏𝟖 𝟏𝟖 𝟏𝟖 𝟏𝟖
0 固有ベクトル中⼼性 (eigenvector centrality) (7/14) 重要なノードに多く接しているノードほど 重要であるとする指標 3 1 2
重要度 = 重要度 = 重要度 = 𝑐( 𝑣) = 𝑐( 𝑣* + 𝑐( 𝑣% + 𝑐( 𝑣+ = 2 18 + 2 18 + 1 18 = 5 18 重要度 = 2 18 2 18 1 18 5 18
0 固有ベクトル中⼼性 (eigenvector centrality) (8/14) 重要なノードに多く接しているノードほど 重要であるとする指標 3 1 2
重要度 = 重要度 = 重要度 = 2 18 1 18 3 18 𝑐( 𝑣+ = 𝑐( 𝑣) + 𝑐( (𝑣% ) = 3 18 + 2 18 = 5 18 重要度 = 5 18
0 固有ベクトル中⼼性 (eigenvector centrality) (9/14) 重要なノードに多く接しているノードほど 重要であるとする指標 3 1 2
重要度 = 重要度 = 重要度 = 2 18 → 5 18 2 18 → 5 18 1 18 → 3 18 重要度 = 3 18 → 5 18 同じことを延々と繰り返す
0 固有ベクトル中⼼性 (eigenvector centrality) (10/14) 重要なノードに多く接しているノードほど 重要であるとする指標 3 1 2
重要度 = 重要度 = 重要度 = 𝑐( 23* 𝑣) = 𝑐( 2 𝑣* + 𝑐( 2 𝑣% + 𝑐( 2 𝑣+ 重要度 = 𝑐! " 𝑣# 𝑐! " 𝑣$ 𝑐! " 𝑣% 𝑐! "&% 𝑣' 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 隣接⾏列A 𝑐! "(𝑣' ) 𝑐! "(𝑣% ) 𝑐! "(𝑣$ ) 𝑐! "(𝑣# ) 重要度ベクトル cn E ⾏列Aとベクトルcn E の 積の⼀部になっている
0 固有ベクトル中⼼性 (eigenvector centrality) (11/14) 重要なノードに多く接しているノードほど 重要であるとする指標 3 1 2
重要度 = 重要度 = 重要度 = 𝑐! "#$ = 𝐴𝑐! " 重要度 = 𝐶! " 𝑣# 𝐶! " 𝑣$ 𝐶! " 𝑣% 𝐶! "&% 𝑣' 繰り返しの計算は隣接行列ですっきり表現できる n回⽬の計算で得た 重要度のベクトル n+1回⽬の計算で得た 重要度のベクトル 隣接⾏列
0 固有ベクトル中⼼性 (eigenvector centrality) (12/14) 重要なノードに多く接しているノードほど 重要であるとする指標 3 1 2
𝑐! " = 𝐴𝑐! # 𝑐! $ = 𝐴𝑐! " 𝑐! %&# = 𝐴𝑐! % … 無限に繰り返すと収束 𝑐! = 𝐴𝑐! 𝑐! ' = 𝐴𝑐! ' (つまり )
0 固有ベクトル中⼼性 (eigenvector centrality) (13/14) 重要なノードに多く接しているノードほど 重要であるとする指標 3 1 2
𝜆𝑐! = 𝐴𝑐! 実は上記中⼼性の定義に基づく 重要度の計算は、隣接⾏列Aの 固有ベクトルを求めることに相当 (最⼤固有値に対応する) 固有ベクトル中心性は隣接行列の固有ベクトルの要素値 𝜆𝑥 = 𝐴𝑥
0 固有ベクトル中⼼性 (eigenvector centrality) (14/14) 重要なノードに多く接しているノードほど 重要であるとする指標 3 1 2
# 固有ベクトル中⼼性 nx.eigenvector_centrality(G) # 上の結果は以下の計算で得られる # 第1番⽬の固有ベクトルと⼀致する import numpy as np A = nx.adjacency_matrix(G).toarray() np.linalg.eg(A).eigenvectors[:, 0]
固有ベクトル中⼼性の⽐較 0 1 2 3 0 1 2 3 6
7 4 5 8 9 ノード0 = 0.612 ノード1 = 0.282 ノード2 = 0.523 ノード3 = 0.523 ノード0 = 0.416 ノード1 = 0.225 ノード2,3 = 0.491 ノード4,5 = 0.119 ノード6,7,8,9 = 0.258 中心性の値は相対的なものであること注意
固有ベクトル中⼼性の限界 for 有向グラフ 1 0 4 2 3 5 1
0 4 2 3 5 強連結グラフ 計算可能 強連結グラフでない 計算不可能 ノード1 = 0 ノード4 = 0? 現実的には強連結でないグラフは多い…
さまざまな中⼼性(⼀部) 近接中心性 他のノードに最も近いノードは? 次数中心性 多くのノードと接続しているノードは? 固有ベクトル中心性 重要なノードと多く接続しているノードは? 媒介中心性 他のノードへの橋渡し役として重要なノードは?
媒介中⼼性 (betweenness centrality) (1/3) 3 6 5 4 1 2
0 注目ノードがそれ以外のノード間の経路に 含まれる割合を示す指標 → ノードがどの程度「経路上の要所」になっているか? ココを通らなくても 他のノードに⾏ける グラフの左から右に ⾏くにはココを絶対 通る必要がある (例: コミュニティをつなぐ橋渡し役、交通の要衝etc..)
媒介中⼼性 (betweenness centrality) (2/3) 3 6 5 4 1 2
0 注目ノードがそれ以外のノード間の経路に 含まれる割合を示す指標 → ノードがどの程度「経路上の要所」になっているか? 媒介中⼼性= 9 15 媒介中⼼性= 0 15 媒介中⼼性= 8 15
媒介中⼼性 (betweenness centrality) (3/3) 3 6 5 4 1 2
0 注目ノードがそれ以外のノード間の経路に 含まれる割合を示す指標 → ノードがどの程度「経路上の要所」になっているか? 媒介中⼼性= 9 15 媒介中⼼性= 0 15 # 媒介中⼼性 cb = nx.betweenness_centrality(G) # ノード3の値 print(cb[3])
Hands-on タイム 以下のURLにアクセスして, 第11回のクイズを解いてみよう https://graphnote.hontolab.org/ 39
回 実施日 トピック 9 06/13 グラフデータ 10 06/20 グラフ構造の諸指標 11
06/27 ノードの中心性 12 07/04 コミュニティ発見 13 07/11 ウェブグラフ 14 07/18 グラフ埋め込み 15 07/25 総合演習 – 社会ネットワーク分析 授業計画 40