Upgrade to Pro — share decks privately, control downloads, hide ads and more …

ML Zero to Hero in GCP

ML Zero to Hero in GCP

Google Cloud Next Extended Lima 2019

Victoria Ubaldo

June 22, 2019
Tweet

More Decks by Victoria Ubaldo

Other Decks in Technology

Transcript

  1. ¿Qué vamos a hablar? • Introducción a ML • Cómo

    empezar con ML • Tecnologías que emplean para ML • ML & Google Cloud • Consejos y tips
  2. La inteligencia artificial (Artificial Intelligence, o AI) es la simulación

    de procesos de inteligencia humana por parte de máquinas, especialmente sistemas informáticos. Estos procesos incluyen el aprendizaje (la adquisición de información y reglas para el uso de la información), el razonamiento (usando las reglas para llegar a conclusiones aproximadas o definitivas) y la autocorrección.
  3. DATA: UK mobile owners continue to break records with their

    text messaging, with latest figures showing that 26 billion texts were sent in total in 2004. ? Prediction Model tech sport business politics entertainment
  4. 7 Steps of Machine Learning 1. Gathering Data 2. Preparing

    that Data 3. Choosing a Model 4. Training 5. Evaluation 6. Hyperparameter Tuning 7. Prediction
  5. Regresión es predecir un valor, una casa más cercana a

    un centro comercial y vías principales, regresa un valor en precio más grande, ejemplo 1,000,000 Clasificación es predecir una categoría, se regresa las “clases” o categorías a buscar y en base a eso nos regresa si es “opción 1” o “opción 2”.
  6. GDG Google Cloud ¿Por qué cloud? • Flexibilidad • Pago

    por uso • Escalabilidad • Alta disponibilidad • Administración • Seguridad • Ubicuidad, localización
  7. GDG Google Cloud ¿Por qué cloud? • Flexibilidad • Pago

    por uso • Escalabilidad • Alta disponibilidad • Administración • Seguridad • Ubicuidad, localización
  8. How Can You Get Started with Machine Learning? Three ways,

    with varying complexity: (1) Use a Cloud-based or Mobile API (Vision, Natural Language, etc.) (2) Use an existing model architecture, and retrain it or fine tune on your dataset (3) Develop your own machine learning models for new problems More flexible, but more effort required
  9. SELECT category, TRIM(LOWER(REGEXP_REPLACE( CONCAT(title, ' ', body), r'["\n\'?,]|<p>|</p>'," " )))

    as text FROM `bigquery-public-data.bbc_news.fulltext` ORDER BY RAND() Gathering data from BigQuery
  10. coach oscar wednesday oil gadgets animals Building a bag of

    words model: a simple example Vocabulary Possible labels tech sport business politics entertainment animals measures europe theatre lawyer cats
  11. coach oscar wednesday oil gadgets animals Building a bag of

    words model: a simple example Vocabulary animals electronics europe theatre lawyer cats Inputs gadgets on show at the 2005 consumer electronics show
  12. coach oscar wednesday oil gadgets animals Building a bag of

    words model: a simple example Vocabulary animals electronic s europe theatre lawyer cats Inputs gadgets on show at the 2005 consumer electronics show [ 0 0 0 0 1 0 0 1 0 0 0 0 ]
  13. Building a bag of words model: a simple example Labels

    tech sport business politics entertainment [ 0 1 0 0 0 ]
  14. Building a bag of words model: a simple example Labels

    tech sport business politics entertainment [ 0.01 0.92 0.03 0.02 0.01 ]
  15. Building a bag of words model: a simple example Labels

    tech sport business politics entertainment [ 0.03 0.02 0.04 0.88 0.03 ]
  16. • Open source Machine Learning library • Especially useful for

    Deep Learning • For research and production • Apache 2.0 license
  17. Android iOS ... GPU CPU TensorFlow Distributed Execution Engine ...

    C++ Frontend Python Frontend Layers Build models
  18. Android iOS ... GPU CPU TensorFlow Distributed Execution Engine ...

    C++ Frontend Python Frontend Layers Estimator Keras Model Train and evaluate models Build models
  19. DATA: UK mobile owners continue to break records with their

    text messaging, with latest figures showing that 26 billion texts were sent in total in 2004. Prediction Model tech
  20. Cloud Machine Learning Engine No-ops distributed TF training Efficient, parallelized,

    hyperparameter search Serve TensorFlow, XGBoost, and scikit-learn models in production
  21. Faces Faces, facial landmarks, emotions OCR Read and extract text,

    with support for > 10 languages Label Detect entities from furniture to transportation Logos Identify product logos Landmarks & Image Properties Detect landmarks & dominant color of image Safe Search Detect explicit content - adult, violent, medical and spoof Cloud Vision API
  22. API Usage: Detect Objects in an Image Image Detected Items

    Vision API Create JSON request with the image or pointer to an image Process the JSON response Call the REST API 1 2 3
  23. Confidential & Proprietary Google Cloud Platform 63 Cloud Natural Language

    API Extract sentence, identify parts of speech and create dependency parse trees for each sentence. Identify entities and label by types such as person, organization, location, events, products and media. Understand the overall sentiment of a block of text. Syntax Analysis Entity Recognition Sentiment Analysis
  24. Face API faces, facial landmarks, eyes open, smiling Barcode API

    1D and 2D barcodes Text API Latin-based text / structure Common Mobile Vision API Support for fast image and video on-device detection and tracking. NEW!
  25. Barcode Detection 1D barcodes EAN-13/8 UPC-A/E Code-39/93/128 ITF Codabar 2D

    barcodes QR Code Data Matrix PDF-417 AZTEC UPC DataMatrix QR Code PDF 417 Video and image credit Google
  26. GDG Google Cloud ¡Por dónde empezar! 12 meses 300 $

    de crédito gratis para que empieces a utilizar cualquier producto de Google Cloud Platform. Always Free Límites de uso gratuito en los productos que participan en la promoción para los clientes que cumplen los requisitos (durante la prueba gratuita y cuando finalice). La oferta está sujeta a cambios.
  27. 7 Steps of Machine Learning 1. Gathering Data 2. Preparing

    that Data 3. Choosing a Model 4. Training 5. Evaluation 6. Hyperparameter Tuning 7. Prediction
  28. Mobile Vision: Codelabs and Samples Googly Eyes Code Sample github.com/googlesamples/android-vision/tree/master/visionSamples/googly-eyes

    Codelabs codelabs.developers.google.com/codelabs/face-detection/ codelabs.developers.google.com/codelabs/mobile-vision-ocr/ Mobile Vision Developers developers.google.com/vision/ GitHub Code Samples github.com/googlesamples/android-vision Stack Overflow Find and ask questions under the android-vision tag.