Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
自己紹介 & 研究紹介
Search
WY
September 13, 2024
0
7
自己紹介 & 研究紹介
WY
September 13, 2024
Tweet
Share
More Decks by WY
See All by WY
PAKDD2024: Recovering Population Dynamics from a Single Pointcloud Snapshot
waxayuzu0
0
13
JSAI2024: 大規模マルチモーダルモデルによるプライバシーを保護したデータアノテーション自動化
waxayuzu0
0
61
Overview of Jailbreaking in Prompt Injection
waxayuzu0
0
77
人工知能全国大会 発表資料
waxayuzu0
0
37
Featured
See All Featured
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Producing Creativity
orderedlist
PRO
346
40k
RailsConf 2023
tenderlove
30
1.1k
How to Ace a Technical Interview
jacobian
277
23k
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.8k
GitHub's CSS Performance
jonrohan
1031
460k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.6k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.5k
VelocityConf: Rendering Performance Case Studies
addyosmani
330
24k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.3k
Transcript
1 ࣗݾհ ϓϩϑΟʔϧ ▪ ໊લɹएҪ༤ل(Θ͔͍Ώ͏͖) ▪ ॴଐ ▪ ژେֶେֶӃ
म࢜2 ݚڀςʔϚ: ɹ܈σʔλͷσʔλղੳख๏ ɹLLMɾLMMͷϓϥΠόγʔอޢɾηΩϡϦςΟ ▪ KaiRA(ژେֶਓೳݚڀձ) ▪ CAMPHOR-(ژͷITܥֶੜίϛϡχςΟ)
2 ࣗݾհ झຯ ▪ αʔΫϧ ▪ େֶͰΦʔέετϥ(Va) ▪ தߴͰESS
▪ झຯ ▪ ΞφϩάήʔϜ ▪ ΧλϯɾΟϯάεύϯͳͲ… ࠷ۙϙʔΧʔগͣͭ͠
KYOTO UNIVERSITY KYOTO UNIVERSITY 3 େنϚϧνϞʔμϧϞσϧʹΑΔ ϓϥΠόγʔΛอޢͨ͠ σʔλΞϊςʔγϣϯࣗಈԽ एҪ༤لɹɹࣛౡٱ࢚
ژେֶ
KYOTO UNIVERSITY 4 ݚڀഎܠ
KYOTO UNIVERSITY 5 ݚڀഎܠ: σʔλϓϥΠόγʔΛอޢ͠ͳ͕ΒLMMΛ׆༻ ▪ େنϚϧνϞʔμϧϞσϧ(Large Multimodal Model, LMM)
ςΩετੳɼԻͷจࣈى͜͠ɼޫֶจࣈೝࣝͷ ༷ʑͳλεΫͰֵ৽తͳੑೳΛൃشɽ ▪ ҰํɼLMMਪαʔϏεͷೖྗσʔλอଘ͞ΕΔɼ ֶशσʔλͱͯ͠ར༻͞ΕΔՄೳੑ͕ଘࡏɽ ▪ σʔλϓϥΠόγʔΛอޢ͠ͳ͕ΒLMMΛ׆༻͢ΔͨΊͷ ٕज़͕ٻΊΒΕ͍ͯΔ
KYOTO UNIVERSITY 6 ݚڀഎܠ: େنϚϧνϞʔμϧϞσϧʹΑΔΞϊςʔγϣϯ ▪ σʔλΞϊςʔγϣϯͷࣗಈԽʹLMMΛԠ༻͢Δ ▪ ਓؒͷख࡞ۀͱൺͯߴ͔ͭߴ࣭ͳΞϊςʔγϣϯ͕ظ͞ΕΔ
▪ ҰํɺLMMར༻࣌σʔλͷϓϥΠόγʔอޢ͕ඞཁ ▪ ຊݚڀͰɺLMMΛͬͨը૾ΞϊςʔγϣϯΛରʹɺ Ξϊςʔγϣϯਫ਼ͱൿಗใอޢΛཱ྆͢Δख๏ΛఏҊ
KYOTO UNIVERSITY 7 ؔ࿈ݚڀ
KYOTO UNIVERSITY 8 ؔ࿈ݚڀ (Data Annotation 1/2) LLMΛ༻͍ͨςΩετΞϊςʔγϣϯ ▪ 2020ͷΞϝϦΧେ౷ྖબʹ͓͚Δ
X(Twitter)ͷςΩετ͔Β࣏తॴଐΛΞϊςʔγϣϯ ▪ ChatGPT-4͕ઐՈɾΫϥυϫʔΧʔΑΓߴਫ਼ɺ ྨͷภΓ͕গͳ͍ɺͳ͍͠ಉͷ݁Ռ GPT-4 GPT-4 ΫϥυϫʔΧʔ ΫϥυϫʔΧʔ
KYOTO UNIVERSITY 9 ؔ࿈ݚڀ (Data Annotation 1/2) LMMΛ༻͍ͨը૾Ξϊςʔγϣϯ ▪ Visual
ChatGPT(ChatGPTΛಠࣗʹϚϧνϞʔμϧԽͨ͠Ϟσϧ)Ͱ ߤۭࣸਅͷઢݕग़ηάϝϯςʔγϣϯΛߦͬͨɽ ▪ ਫ਼λεΫͷੑ࣭ʹґଘ ▪ ֶशσʔλʹλεΫ༻ͷσʔλؚ͕·Ε͍ͯͳ͍͕ɼ શମͱͯ͠ϥϯμϜਪଌΛେ෯ʹ্ճΔਫ਼͕ಘΒΕͨ
KYOTO UNIVERSITY 10 ؔ࿈ݚڀ (Privacy-preserving computing 1/2) Cipher GPT ▪
ൿີܭࢉ(σʔλΛ҉߸Խͨ͠··ܭࢉ͢Δ͜ͱ)Λ େنݴޠϞσϧͰ࣮͢Δ͜ͱݱ࣮తͰͳ͍ɽ ▪ Cipher GPT: ൿີܭࢉ͕ՄೳͳGPT-2 ɹ256τʔΫϯͷೖྗ͔Β256τʔΫϯͷग़ྗʹɼ ɹฏۉ 24 ͷϨΠςϯγͱ 93 GBͷଳҬ෯͕ඞཁ ▪ ൿີܭࢉ͕Ͱ͖ͳ͍େنϚϧνϞʔμϧϞσϧʹɼ ೖྗσʔλΛՃॲཧ͢Δ͜ͱͰϓϥΠόγʔΛอޢ͢Δ ͜ͱΛࢦ͢ɽ
KYOTO UNIVERSITY 11 ؔ࿈ݚڀ (Privacy-preserving computing 2/2) ೖྗϓϩϯϓτͷൿಗԽ ▪ Hide
and Seek(HaS)ϑϨʔϜϫʔΫ ▪ ೖྗதͷਓ໊࣌ؒͷہॴతͳػີใΛಗ໊Խ ಗ໊Խ⁶ඇಗ໊ԽͷஔؔΛผͷݴޠϞσϧֶ͕श ▪ ຊݚڀɼ୯७ͳஔͰରԠՄೳͳہॴతͳใͰͳ͘ɼ จষͷτϐοΫͷೖྗσʔλશମ͔ΒಘΒΕΔใͷ อޢΛରͱ͢Δɽ
KYOTO UNIVERSITY 12 ઃఆ
KYOTO UNIVERSITY 13 ઃఆ ຊݚڀͷઃఆ ▪ ຊݚڀͰը૾ͷΞϊςʔγϣϯλεΫΛఆɽ ▪ ΞϊςʔγϣϯλεΫLMMͰղ͘͜ͱՄೳɽ
ͨͩ͠ɺͦͷλεΫʹಛԽֶͯ͠शͨ͠Ϟσϧͷํ͕ ΑΓߴਫ਼ͩͱఆɽ
KYOTO UNIVERSITY 14 ఏҊख๏
KYOTO UNIVERSITY 1. Ξϊςʔγϣϯ͢Δը૾͔Βෳͷখ͍͞ը૾ΛΓग़͢ 2. খ͍͞ը૾Λࠞ߹͠ɼೖྗը૾Λ࠶ߏ͢Δ 3. খ͍͞ը૾͝ͱʹΞϊςʔγϣϯ͢ΔΑ͏ϓϩϯϓτΛ༩͑Δ 4. খ͍͞ը૾ͷΞϊςʔγϣϯ݁ՌΛ౷߹
15 ఏҊख๏ ը૾ΛΓग़ͯ͠LMMʹೖྗɺग़ྗΛݩͷը૾ʹ౷߹
KYOTO UNIVERSITY ▪ Ξϊςʔγϣϯͷࠜڌը૾ͷہॴతͳ෦ʹଘࡏ͠ɺ ϓϥΠόγʔը૾શମͷใ͔ΒऔಘͰ͖Δ߹ʹ༗ޮ (ྫ: إݕग़ɾOCR) ▪
Ξϊςʔγϣϯͷࠜڌ: ▪ ը૾ʹਓؒͷإ͕͍ࣸͬͯΔ͔ʁ ▪ ը૾શମ͔ΒಘΒΕΔେҬతͳϓϥΠόγʔ: ▪ ը૾ʹ͍ࣸͬͯΔਓ͕Կͷಈ࡞Λ͍ͯ͠Δ͔ʁ 16 ఏҊख๏ ը૾ΛΓग़ͯ͠LMMʹೖྗɺग़ྗΛݩͷը૾ʹ౷߹
KYOTO UNIVERSITY 17 ࣮ݧ
KYOTO UNIVERSITY 18 ࣮ݧ:ਓؒͷإͷΞϊςʔγϣϯ σʔληοτ ▪ ࣮ݧ: ը૾ʹਓؒͷإ͕͍ࣸͬͯΔ͔True/FalseͰΞϊςʔγϣϯ ▪
2ͭͷσʔληοτΛར༻ ਓؒͷإΛؚΉσʔλ: Stanford 40 Action Dataset ▪ “Cooking”ͳͲͷಛఆͷΞΫγϣϯΛߦ͏ ਓؒͷը૾σʔληοτ ▪ ࣮ݧͰ10ͷΞΫγϣϯΫϥεΛબ σʔλྫ
KYOTO UNIVERSITY 19 ࣮ݧ:ਓؒͷإͷΞϊςʔγϣϯ σʔληοτ ▪ ࣮ݧ: ը૾ʹਓؒͷإ͕͍ࣸͬͯΔ͔True/FalseͰΞϊςʔγϣϯ ▪
2ͭͷσʔληοτΛར༻ ਓؒͷإΛؚ·ͳ͍σʔλ: ADE20K Dataset ▪ “Bedroom”, ”Aquarium” ͳͲ γʔϯը૾ͷσʔληοτ ▪ ࣮ݧͰɺਓ͕͍ؒࣸͬͯͳ͍ ը૾Λ100ຕબΜͩ σʔλྫ
KYOTO UNIVERSITY 20 ࣮ݧ:ਓؒͷإͷΞϊςʔγϣϯ ධՁࢦඪ ▪ ࣮ݧͰɺΞϊςʔγϣϯਫ਼ͱϓϥΠόγʔ࿙ӮϦεΫͷ 2ͭͷࢦඪΛධՁͨ͠ ▪
Ξϊςʔγϣϯਫ਼: ɹఏҊख๏ʹΑΔΞϊςʔγϣϯͷਖ਼ղ ▪ ϓϥΠόγʔ࿙ӮϦεΫ: 1. ਓͷإΛؚΉ100ຕͷΞϊςʔγϣϯը૾Λೖྗ 2. ਓ͕ԿͷΞΫγϣϯΛ͍ͯ͠Δ͔10Ϋϥεྨ 3. ྨਫ਼ΛϓϥΠόγʔ࿙ӮϦεΫͱͯ͠ධՁ ͜ͷਓԿΛ ͍ͯ͠Δ͔ʁ ϓϥΠόγʔ࿙Ӯ ϦεΫͷධՁ
KYOTO UNIVERSITY 21 ࣮ݧ:ਓؒͷإͷΞϊςʔγϣϯ ਫ਼ྼԽෆՄආ͕ͩɺϓϥΠόγʔ࿙ӮϦεΫ͕େ෯ʹݮগ ▪ ࡉԽʹΑΓɼΞϊςʔγϣϯਫ਼Լ͢Δ͕ 80%Ҏ্ʹอͨΕ͍ͯΔɽ ▪
ҰํɼϓϥΠόγʔ࿙ӮϦεΫେ෯ʹԼ͢Δɽ
KYOTO UNIVERSITY 22 ݁
KYOTO UNIVERSITY 23 ݁ ▪ ຊݚڀͰɺେҬతͳϓϥΠόγʔΛอޢ͠ͳ͕Β ΞϊςʔγϣϯΛߦ͏ϑϨʔϜϫʔΫΛఏҊ ▪ Large
Multimodal Model (LMM)Λ༻͍࣮ͨݧΛߦ͍ɺ Ξϊςʔγϣϯਫ਼ͱϓϥΠόγʔ࿙ӮϦεΫͷ τϨʔυΦϑΛݕূͨ͠ɻ ▪ ఏҊख๏ʹ͓͍ͯը૾Λࡉׂ͔͘͢Δ͜ͱͰɺ Ξϊςʔγϣϯਫ਼Λҡ࣋͠ͳ͕Βɺ ϓϥΠόγʔ࿙ӮϦεΫΛେ෯ʹݮͰ͖Δ͜ͱΛࣔͨ͠
KYOTO UNIVERSITY 24 ࠓޙͷల ▪ େنϚϧνϞʔμϧϞσϧͱΫϥυϫʔΧʔʹΑΔ ΞϊςʔγϣϯΛൺֱධՁ͢Δ ▪ ςΩετԻΛೖྗͱͨ͠߹ʹख๏Λ֦ு͢Δ