Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
“Why Should I Trust You?” Explaining the Predic...
Search
Wei Lu
November 06, 2017
Science
0
54
“Why Should I Trust You?” Explaining the Predictions of Any Classifier
Papers We Love, Nov 2017
Wei Lu
November 06, 2017
Tweet
Share
More Decks by Wei Lu
See All by Wei Lu
A Brief Introduction to the Basics of Game Theory
weilu
0
120
Bundler vs npm
weilu
0
530
Cryptocurrency
weilu
1
220
Peatio - An open-source crypto currency exchange
weilu
0
680
Bitcoin Applications in JavaScript
weilu
0
85
Writing expressive tests with RSpec
weilu
0
140
Other Decks in Science
See All in Science
2025-06-11-ai_belgium
sofievl
1
150
データベース02: データベースの概念
trycycle
PRO
2
890
ウェブ・ソーシャルメディア論文読み会 第25回: Differences in misinformation sharing can lead to politically asymmetric sanctions (Nature, 2024)
hkefka385
0
130
Explanatory material
yuki1986
0
390
データマイニング - ノードの中心性
trycycle
PRO
0
260
データベース10: 拡張実体関連モデル
trycycle
PRO
0
970
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
0
120
機械学習 - DBSCAN
trycycle
PRO
0
1k
CV_3_Keypoints
hachama
0
200
データベース08: 実体関連モデルとは?
trycycle
PRO
0
930
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
180
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1k
Featured
See All Featured
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Unsuck your backbone
ammeep
671
58k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Facilitating Awesome Meetings
lara
55
6.5k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
111
20k
How GitHub (no longer) Works
holman
315
140k
Docker and Python
trallard
45
3.5k
The Art of Programming - Codeland 2020
erikaheidi
55
13k
How to Ace a Technical Interview
jacobian
279
23k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Writing Fast Ruby
sferik
628
62k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.5k
Transcript
“Why Should I Trust You?” Explaining the Predictions of Any
Classifier Papers We Love Nov 2017
None
Can I trust the prediction?
Can I trust the prediction?
Trust • Trusting a prediction: whether a user trusts an
individual prediction sufficiently to take some action based on it. • Trusting a model: whether the user trusts a model to behave in reasonable ways if deployed.
Trust Prediction Model
LIME: Local Interpretable Model-agnostic Explanations Local: global model can be
complicated and hard to approximate Interpretable: because human Model-agnostic: works on any black box Explanation: back to “trust”
Local fidelity
Pick predictions: Submodular pick (SP)