Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
“Why Should I Trust You?” Explaining the Predic...
Search
Wei Lu
November 06, 2017
Science
0
55
“Why Should I Trust You?” Explaining the Predictions of Any Classifier
Papers We Love, Nov 2017
Wei Lu
November 06, 2017
Tweet
Share
More Decks by Wei Lu
See All by Wei Lu
A Brief Introduction to the Basics of Game Theory
weilu
0
130
Bundler vs npm
weilu
0
530
Cryptocurrency
weilu
1
230
Peatio - An open-source crypto currency exchange
weilu
0
680
Bitcoin Applications in JavaScript
weilu
0
87
Writing expressive tests with RSpec
weilu
0
140
Other Decks in Science
See All in Science
力学系から見た現代的な機械学習
hanbao
3
3.6k
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
1.1k
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
1k
生成検索エンジン最適化に関する研究の紹介
ynakano
2
1.5k
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1.1k
白金鉱業Vol.21【初学者向け発表枠】身近な例から学ぶ数理最適化の基礎 / Learning the Basics of Mathematical Optimization Through Everyday Examples
brainpadpr
1
460
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
400
主成分分析に基づく教師なし特徴抽出法を用いたコラーゲン-グリコサミノグリカンメッシュの遺伝子発現への影響
tagtag
0
140
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
420
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1.2k
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
470
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.2k
Featured
See All Featured
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
200
The Language of Interfaces
destraynor
162
25k
Unsuck your backbone
ammeep
671
58k
We Have a Design System, Now What?
morganepeng
54
7.9k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.7k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
11
Balancing Empowerment & Direction
lara
5
810
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
87
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
Transcript
“Why Should I Trust You?” Explaining the Predictions of Any
Classifier Papers We Love Nov 2017
None
Can I trust the prediction?
Can I trust the prediction?
Trust • Trusting a prediction: whether a user trusts an
individual prediction sufficiently to take some action based on it. • Trusting a model: whether the user trusts a model to behave in reasonable ways if deployed.
Trust Prediction Model
LIME: Local Interpretable Model-agnostic Explanations Local: global model can be
complicated and hard to approximate Interpretable: because human Model-agnostic: works on any black box Explanation: back to “trust”
Local fidelity
Pick predictions: Submodular pick (SP)