Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
“Why Should I Trust You?” Explaining the Predic...
Search
Wei Lu
November 06, 2017
Science
0
51
“Why Should I Trust You?” Explaining the Predictions of Any Classifier
Papers We Love, Nov 2017
Wei Lu
November 06, 2017
Tweet
Share
More Decks by Wei Lu
See All by Wei Lu
A Brief Introduction to the Basics of Game Theory
weilu
0
100
Bundler vs npm
weilu
0
510
Cryptocurrency
weilu
1
200
Peatio - An open-source crypto currency exchange
weilu
0
660
Bitcoin Applications in JavaScript
weilu
0
82
Writing expressive tests with RSpec
weilu
0
130
Other Decks in Science
See All in Science
大規模言語モデルの開発
chokkan
PRO
85
42k
WeMeet Group - 採用資料
wemeet
0
4.2k
はじめてのバックドア基準:あるいは、重回帰分析の偏回帰係数を因果効果の推定値として解釈してよいのか問題
takehikoihayashi
2
1.1k
ウェーブレットおきもち講座
aikiriao
1
820
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
3
1.3k
構造設計のための3D生成AI-最新の取り組みと今後の展開-
kojinishiguchi
0
720
機械学習を支える連続最適化
nearme_tech
PRO
1
220
理論計算機科学における 数学の応用: 擬似ランダムネス
nobushimi
1
390
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
120
解説!データ基盤の進化を後押しする手順とタイミング
shomaekawa
1
390
多次元展開法を用いた 多値バイクラスタリング モデルの提案
kosugitti
0
210
Transformers are Universal in Context Learners
gpeyre
0
670
Featured
See All Featured
Speed Design
sergeychernyshev
25
750
Documentation Writing (for coders)
carmenintech
67
4.6k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Facilitating Awesome Meetings
lara
51
6.2k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.2k
Agile that works and the tools we love
rasmusluckow
328
21k
Designing Experiences People Love
moore
139
23k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Building Flexible Design Systems
yeseniaperezcruz
328
38k
How STYLIGHT went responsive
nonsquared
96
5.3k
Embracing the Ebb and Flow
colly
84
4.5k
Site-Speed That Sticks
csswizardry
3
300
Transcript
“Why Should I Trust You?” Explaining the Predictions of Any
Classifier Papers We Love Nov 2017
None
Can I trust the prediction?
Can I trust the prediction?
Trust • Trusting a prediction: whether a user trusts an
individual prediction sufficiently to take some action based on it. • Trusting a model: whether the user trusts a model to behave in reasonable ways if deployed.
Trust Prediction Model
LIME: Local Interpretable Model-agnostic Explanations Local: global model can be
complicated and hard to approximate Interpretable: because human Model-agnostic: works on any black box Explanation: back to “trust”
Local fidelity
Pick predictions: Submodular pick (SP)