Seminar given at University of Minnesota cosmology lunch talk series in the School of Physics and Astronomy. Covers new results from workshop at ESO in Garching from Jul 2014, as well as work by Willett et al. (in prep).
(UC San Diego) Shaun Cole (Durham University) Scott Croom (University of Sydney) Ryan Hickox (Darthmouth) Issha Kayo (Toho University) Andrea Merloni (MPE) Takamitsu Miyaji (UNAM) Adam Myers (University of Wyoming) Ray Norris (CSIRO) Volker Springel (HITS) Nikolaos Fanidakis (MPIA) SOC Mirko Krumpe (ESO, chair) Paolo Padovani (ESO) Alison Coil (UC San Diego) Scott Croom (University of Sydney) Antonis Georgakakis (MPE) Guinevere Kauffmann (MPA) Takamitsu Miyaji (UNAM) Yue Shen (Carnegie) Simon White (MPA) First ever workshop dedicated to: Abstract submission deadline 18 April 2014 Workshop web page: http://www.eso.org/sci/meetings/2014/AGN2014.html Conference e-mail address: [email protected] Image credits: Centaurus A: ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); NASA CXC/CfA/R.Kraft et al. (X-ray). Galaxy Cluster Abell 1689: NASA, ESA, E. Jullo (JPL), P. Natarajan (Yale), & J.-P. Kneib (LAM, CNRS). AGN (background image): ESA/NASA, the AVO project and Paolo Padovani. Galaxies and AGN are not randomly distributed in the Universe. The distribution of AGN, revealed by clustering measurements, enables new insights into cosmology and the physical conditions that govern the accretion onto supermassive black holes. AGN clustering PHDVXUHPHQWVKDYHJDLQHGDVLJQLĺFDQWLQWHUHVWLQWKHFRPPXQLW\LQ the last decade. 7KLV(62ZRUNVKRSZKLFKZLOOEHWKHĺUVWHYHUZRUNVKRSGHGLFDWHG to AGN clustering, aims to summarise our current understanding of AGN clustering and how the community should prepare for upcoming datasets and challenges. 6FLHQWLðFWRSLFVFRYHUHGDWWKHFRQIHUHQFHLQFOXGH ź =RRRI$*1 DFRQVLVWHQWSLFWXUHRI$*1ODUJHVFDOH FOXVWHULQJSURSHUWLHV ź :KDWZHFDQOHDUQIURPJDOD[\FOXVWHULQJPHDVXUHPHQWV ź 6\QHUJ\EHWZHHQODUJHVFDOHVWUXFWXUHVLPXODWLRQVDQG $*1FOXVWHULQJPHDVXUHPHQWV ź /RFDWLQJ$*1LQGDUNPDWWHUKDORV$*1VPDOOVFDOH FOXVWHULQJ +DORRFFXSDWLRQGLVWULEXWLRQVWXGLHV ź )XWXUHODUJH$*1VDPSOHVIRUFOXVWHULQJPHDVXUHPHQWV FKDOOHQJHV ESO Garching, ò-XO\ Part I lots of other scientists’ research
(UC San Diego) Shaun Cole (Durham University) Scott Croom (University of Sydney) Ryan Hickox (Darthmouth) Issha Kayo (Toho University) Andrea Merloni (MPE) Takamitsu Miyaji (UNAM) Adam Myers (University of Wyoming) Ray Norris (CSIRO) Volker Springel (HITS) Nikolaos Fanidakis (MPIA) SOC Mirko Krumpe (ESO, chair) Paolo Padovani (ESO) Alison Coil (UC San Diego) Scott Croom (University of Sydney) Antonis Georgakakis (MPE) Guinevere Kauffmann (MPA) Takamitsu Miyaji (UNAM) Yue Shen (Carnegie) Simon White (MPA) First ever workshop dedicated to: Abstract submission deadline 18 April 2014 Workshop web page: http://www.eso.org/sci/meetings/2014/AGN2014.html Conference e-mail address: [email protected] Image credits: Centaurus A: ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); NASA CXC/CfA/R.Kraft et al. (X-ray). Galaxy Cluster Abell 1689: NASA, ESA, E. Jullo (JPL), P. Natarajan (Yale), & J.-P. Kneib (LAM, CNRS). AGN (background image): ESA/NASA, the AVO project and Paolo Padovani. Galaxies and AGN are not randomly distributed in the Universe. The distribution of AGN, revealed by clustering measurements, enables new insights into cosmology and the physical conditions that govern the accretion onto supermassive black holes. AGN clustering PHDVXUHPHQWVKDYHJDLQHGDVLJQLĺFDQWLQWHUHVWLQWKHFRPPXQLW\LQ the last decade. 7KLV(62ZRUNVKRSZKLFKZLOOEHWKHĺUVWHYHUZRUNVKRSGHGLFDWHG to AGN clustering, aims to summarise our current understanding of AGN clustering and how the community should prepare for upcoming datasets and challenges. 6FLHQWLðFWRSLFVFRYHUHGDWWKHFRQIHUHQFHLQFOXGH ź =RRRI$*1 DFRQVLVWHQWSLFWXUHRI$*1ODUJHVFDOH FOXVWHULQJSURSHUWLHV ź :KDWZHFDQOHDUQIURPJDOD[\FOXVWHULQJPHDVXUHPHQWV ź 6\QHUJ\EHWZHHQODUJHVFDOHVWUXFWXUHVLPXODWLRQVDQG $*1FOXVWHULQJPHDVXUHPHQWV ź /RFDWLQJ$*1LQGDUNPDWWHUKDORV$*1VPDOOVFDOH FOXVWHULQJ +DORRFFXSDWLRQGLVWULEXWLRQVWXGLHV ź )XWXUHODUJH$*1VDPSOHVIRUFOXVWHULQJPHDVXUHPHQWV FKDOOHQJHV ESO Garching, ò-XO\ Part I lots of other scientists’ research Part II B = (Nt Nbg) (3 )D 3✓ 1 2A✓I [M(m, z)] my research
L U S T E R I N G dP = n(1 + ⇠[r])dV excess probability of finding another source within dV ⇠[r] = 1 RR " DD ✓ nR nD ◆2 2DR ✓ nR nD ◆ + RR # Landy-Szalay estimator
L U S T E R I N G dP = n(1 + ⇠[r])dV excess probability of finding another source within dV ⇠[r] = 1 RR " DD ✓ nR nD ◆2 2DR ✓ nR nD ◆ + RR # Landy-Szalay estimator ⇠[r] = ✓ r r0 ◆ Power-law parameterization of correlation function
L U S T E R I N G dP = n(1 + ⇠[r])dV excess probability of finding another source within dV ⇠[r] = 1 RR " DD ✓ nR nD ◆2 2DR ✓ nR nD ◆ + RR # Landy-Szalay estimator ⇠[r] = ✓ r r0 ◆ Power-law parameterization of correlation function wp[rp] = 2 Z 1 0 d⇡⇠[rp, ⇡] = A rp ✓ rp r0 ◆ Projected correlation function
O L O G I C A L PA R A M E T E R S C O N S T R A I N E D B Y C L U S T E R I N G ? Tegmark+04 B L A C K H O L E H O S T G A L A X Y D A R K M AT T E R H A L O
O L O G I C A L PA R A M E T E R S C O N S T R A I N E D B Y C L U S T E R I N G ? ⇠l[s] = (2l + 1)/2 Z ⇠[rp, ⇡]Pl[cos✓]d cos ✓ ⇠2/⇠0 = ✓ 3 + n n ◆ 4 3 + 4 7 2 1 + 2 3 + 1 5 2 = ⌦m/b Tegmark+04 B L A C K H O L E H O S T G A L A X Y D A R K M AT T E R H A L O
O N M E T H O D S • Luminosity cuts: X-ray, radio • Color cuts: IR • Spectral lines: optical • ID depends on: • host galaxy contamination • viewing geometry • Eddington ratio • telescope sensitivity Curran+00; NASA B L A C K H O L E H O S T G A L A X Y D A R K M AT T E R H A L O
O N M E T H O D S • Luminosity cuts: X-ray, radio • Color cuts: IR • Spectral lines: optical • ID depends on: • host galaxy contamination • viewing geometry • Eddington ratio • telescope sensitivity Curran+00; NASA IR Radio B L A C K H O L E H O S T G A L A X Y D A R K M AT T E R H A L O
O N M E T H O D S • Luminosity cuts: X-ray, radio • Color cuts: IR • Spectral lines: optical • ID depends on: • host galaxy contamination • viewing geometry • Eddington ratio • telescope sensitivity Curran+00; NASA IR Radio B L A C K H O L E H O S T G A L A X Y D A R K M AT T E R H A L O Optical X-ray
O N M E T H O D S Hickox+09 • Luminosity cuts: X-ray, radio • Color cuts: IR • Spectral lines: optical • ID depends on: • host galaxy contamination • viewing geometry • Eddington ratio • telescope sensitivity B L A C K H O L E H O S T G A L A X Y D A R K M AT T E R H A L O
O N M E T H O D S Mendez+13 • Luminosity cuts: X-ray, radio • Color cuts: IR • Spectral lines: optical • ID depends on: • host galaxy contamination • viewing geometry • Eddington ratio • telescope sensitivity B L A C K H O L E H O S T G A L A X Y D A R K M AT T E R H A L O
O F C L U S T E R I N G O N G A L A X Y P R O P E R T I E S ! • galaxy luminosity • color • morphology Zehavi+11 B L A C K H O L E H O S T G A L A X Y D A R K M AT T E R H A L O
O F C L U S T E R I N G O N G A L A X Y P R O P E R T I E S Zehavi+11 ! • galaxy luminosity • color • morphology B L A C K H O L E H O S T G A L A X Y D A R K M AT T E R H A L O
O F C L U S T E R I N G O N G A L A X Y P R O P E R T I E S Skibba+09 ! • galaxy luminosity • color • morphology B L A C K H O L E H O S T G A L A X Y D A R K M AT T E R H A L O
O F C L U S T E R I N G O N B L A C K H O L E P R O P E R T I E S • AGN luminosity may trace the clustering mass • different AGN selection functions have different clustering amplitudes! • close pairs are known to trigger BH activity, but only above a certain bolometric luminosity R. Hickox B L A C K H O L E H O S T G A L A X Y D A R K M AT T E R H A L O
O F C L U S T E R I N G O N B L A C K H O L E P R O P E R T I E S • AGN luminosity may trace the clustering mass • different AGN selection functions have different clustering amplitudes! • close pairs are known to trigger BH activity, but only above a certain bolometric luminosity AGN luminosity R. Hickox B L A C K H O L E H O S T G A L A X Y D A R K M AT T E R H A L O
O F C L U S T E R I N G O N B L A C K H O L E P R O P E R T I E S • AGN luminosity may trace the clustering mass • different AGN selection functions have different clustering amplitudes! • close pairs are known to trigger BH activity, but only above a certain bolometric luminosity AGN luminosity black hole mass R. Hickox B L A C K H O L E H O S T G A L A X Y D A R K M AT T E R H A L O
O F C L U S T E R I N G O N B L A C K H O L E P R O P E R T I E S • AGN luminosity may trace the clustering mass • different AGN selection functions have different clustering amplitudes! • close pairs are known to trigger BH activity, but only above a certain bolometric luminosity AGN luminosity black hole mass spheroid mass (σ) R. Hickox B L A C K H O L E H O S T G A L A X Y D A R K M AT T E R H A L O
O F C L U S T E R I N G O N B L A C K H O L E P R O P E R T I E S • AGN luminosity may trace the clustering mass • different AGN selection functions have different clustering amplitudes! • close pairs are known to trigger BH activity, but only above a certain bolometric luminosity AGN luminosity black hole mass spheroid mass (σ) halo mass R. Hickox B L A C K H O L E H O S T G A L A X Y D A R K M AT T E R H A L O
O F C L U S T E R I N G O N B L A C K H O L E P R O P E R T I E S • AGN luminosity may trace the clustering mass • different AGN selection functions have different clustering amplitudes! • close pairs are known to trigger BH activity, but only above a certain bolometric luminosity AGN luminosity black hole mass spheroid mass (σ) halo mass clustering amplitude R. Hickox B L A C K H O L E H O S T G A L A X Y D A R K M AT T E R H A L O
O F C L U S T E R I N G O N B L A C K H O L E P R O P E R T I E S • AGN luminosity may trace the clustering mass • different AGN selection functions have different clustering amplitudes! • close pairs are known to trigger BH activity, but only above a certain bolometric luminosity R. Hickox B L A C K H O L E H O S T G A L A X Y D A R K M AT T E R H A L O
O F C L U S T E R I N G O N B L A C K H O L E P R O P E R T I E S Hickox+09 • AGN luminosity may trace the clustering mass • different AGN selection functions have different clustering amplitudes! • close pairs are known to trigger BH activity, but only above a certain bolometric luminosity B L A C K H O L E H O S T G A L A X Y D A R K M AT T E R H A L O
S T E R I N G D E P E N D O N T H E P H Y S I C S O F G A L A X Y F O R M AT I O N A N D E V O L U T I O N ? • mass of the dark matter halo • location of galaxies within the halo • interaction of the cold gas & subsequent SF • accretion mode Hickox+09 B L A C K H O L E H O S T G A L A X Y D A R K M AT T E R H A L O
Obscured vs. unobscured AGN: clustering may not support the unified model • Role of mergers is reinforced for the highest luminosity quasars • Semi-analytic simulations predict that observed AGN halo mass distribution is result of different modes of accretion Mendez+14 B L A C K H O L E H O S T G A L A X Y D A R K M AT T E R H A L O
• Obscured vs. unobscured AGN: clustering may not support the unified model • Role of mergers is reinforced for the highest luminosity quasars • Semi-analytic simulations predict that observed AGN halo mass distribution is result of different modes of accretion B L A C K H O L E H O S T G A L A X Y D A R K M AT T E R H A L O
Kayo • Obscured vs. unobscured AGN: clustering may not support the unified model • Role of mergers is reinforced for the highest luminosity quasars • Semi-analytic simulations predict that observed AGN halo mass distribution is result of different modes of accretion B L A C K H O L E H O S T G A L A X Y D A R K M AT T E R H A L O
• Obscured vs. unobscured AGN: clustering may not support the unified model • Role of mergers is reinforced for the highest luminosity quasars • Semi-analytic simulations predict that observed AGN halo mass distribution is result of different modes of accretion B L A C K H O L E H O S T G A L A X Y D A R K M AT T E R H A L O
R A D I O - > I R - > O P T I C A L - > X - R A Y F U T U R E S U R V E Y S A N D S A M P L E S F O R A G N C L U S T E R I N G M E A S U R E M E N T S
E Y S A N D S A M P L E S F O R A G N C L U S T E R I N G M E A S U R E M E N T S • EMU • eBOSS • HETDEX • eROSITA • 4MOST R A D I O - > I R - > O P T I C A L - > X - R A Y
E Y S A N D S A M P L E S F O R A G N C L U S T E R I N G M E A S U R E M E N T S • EMU • eBOSS • HETDEX • eROSITA • 4MOST R A D I O - > I R - > O P T I C A L - > X - R A Y
E Y S A N D S A M P L E S F O R A G N C L U S T E R I N G M E A S U R E M E N T S • EMU • eBOSS • HETDEX • eROSITA • 4MOST R A D I O - > I R - > O P T I C A L - > X - R A Y
I O G A L A X Y U N I F I C AT I O N S C E N A R I O B L L A C F S R Q O P T I C A L S P E C T R U M n o s t ro n g e m i s s i o n o r a b s o r p t i o n f e a t u re s E W < 5 Å b ro a d e m i s s i o n l i n e s s u p e r i m p o s e d o n s t ro n g c o n t i n u u m R A D I O J E T S ! c o re - d o m i n a t e d m o r p h o l o g i e s H O S T G A L A X Y l u m i n o u s e l l i p t i c a l s l u m i n o u s e l l i p t i c a l , 1 - 2 m a g s b r i g h t e r t h a n B L L a c h o s t s E N V I R O N M E N T m o d e r a t e l y r i c h c l u s t e r s ; A b e l l c l a s s 0 t o 1 l i e i n re g i o n s o f l o w e r g a l a x y d e n s i t i e s V I E W E D D I R E C T LY D O W N J E T A X I S low ⌫peak, ↵r < 0 . 5 high ⌫peak
I O G A L A X Y U N I F I C AT I O N S C E N A R I O F R I F R I I O P T I C A L S P E C T R U M w e a k o p t i c a l e m i s s i o n l i n e s ( f o r g i v e n l u m i n o s i t y ) t y p i c a l l y s t ro n g e r o p t i c a l e m i s s i o n l i n e s R A D I O J E T S l o w - l u m i n o s i t y ; i n t e n s i t y f a l l s o ff a w a y f ro m n u c l e u s h i g h l u m i n o s i t y ; e x t e n d e d l o b e s a n d h o t s p o t s H O S T G A L A X Y g i a n t e l l i p t i c a l s ; 1 0 % h a v e s o m e d e v i a t i o n f ro m p ro f i l e o f e l l i p t i c a l s ; s l i g h t l y l o w e r a v e r a g e o p t i c a l l u m i n o s i t i e s t h a n F R I s E N V I R O N M E N T m o d e r a t e l y r i c h c l u s t e r s ; o f t e n B C G s re l a t i v e l y i s o l a t e d , m o re c o n s i s t e n t w i t h f i e l d g a l a x i e s V I E W E D O F F - A X I S F R O M R A D I O J E T r1/4
S U LT S • Prestage+88: BL Lac environments are consistent with FR Is • Individual studies of BL Lacs show excesses of galaxies with Abell richnesses between 0 and 1 (Falomo+96,00,Pesce +94,Fried+93,Smith+95) in agreement with FR Is (Hill+91) • Owen+95: surveys of powerful radio sources in clusters revealed many FR Is, but no BL Lacs. • Wurtz+93,97: BL Lacs are found in poor clusters, with richness increasing with redshift. Trends are more similar to FR II than FR I. • Urry+00, Falomo+00, Pesce+02: enhancements in BL Lac environments over average density. High number of close companions (< 20 kpc) identified. BL Lac FSRQ FR I FR II blazars radio galaxies
S U LT S • Prestage+88: BL Lac environments are consistent with FR Is • Individual studies of BL Lacs show excesses of galaxies with Abell richnesses between 0 and 1 (Falomo+96,00,Pesce +94,Fried+93,Smith+95) in agreement with FR Is (Hill+91) • Owen+95: surveys of powerful radio sources in clusters revealed many FR Is, but no BL Lacs. • Wurtz+93,97: BL Lacs are found in poor clusters, with richness increasing with redshift. Trends are more similar to FR II than FR I. • Urry+00, Falomo+00, Pesce+02: enhancements in BL Lac environments over average density. High number of close companions (< 20 kpc) identified. M I S S I N G : U P - T O - D AT E S T U D I E S O F T H E B L A Z A R P O P U L AT I O N S W I T H I M P R O V E D S TAT I S T I C S A N D D E E P E R I M A G I N G BL Lac FSRQ FR I FR II blazars radio galaxies
C T I O N • Roma-BZCAT: 2,728 blazars • Optically-selected blazars from SDSS • 723 BL Lacs (Plotkin+10) • 185 FSRQs (Chen+09) • TeV-Cat γ-ray selected objects: 148 blazars
A N C E A M P L I T U D E • Measures number of neighboring galaxies in projection around a single point • Pros: independent of magnitude limit or counting radius; can be used without full 3D positions • Cons: statistical measurement with large error bars (~50-100%) on individual points
A N C E A M P L I T U D E • Measures number of neighboring galaxies in projection around a single point • Pros: independent of magnitude limit or counting radius; can be used without full 3D positions • Cons: statistical measurement with large error bars (~50-100%) on individual points
A N C E A M P L I T U D E • Measures number of neighboring galaxies in projection around a single point • Pros: independent of magnitude limit or counting radius; can be used without full 3D positions • Cons: statistical measurement with large error bars (~50-100%) on individual points B = (Nt Nbg) (3 )D 3✓ 1 2A✓I [M(m, z)]
O N O F B L A Z A R S PAT I A L C O R R E L AT I O N A M P L I T U D E S −1500−1000 −500 0 500 1000 1500 B gB [Mpc−1.77] 0 50 100 150 200 250 Number of blazars <B gB >= 111±257 <B gB >= 116±278 FSRQ BL Lac
2000 B gB 0.0 0.2 0.4 0.6 Blazar redshift −2000 −1000 0 1000 2000 B gB FSRQ BL Lac B L A Z A R C L U S T E R I N G A S F U N C T I O N O F R E D S H I F T • 757 blazars have measurable BgB values from SDSS data • Richer clusters are found at z > 0.5, increasing by a factor of 2-3 • Trend is the same for both BL Lacs and FSRQs 0.0 0.2 0.4 0.6 0 -1000 -2000 2000 1000 BgB z BL Lac FSRQ
VA L U E S A S F U N C T I O N O F M U LT I WAV E L E N G T H P R O P E R T I E S 102310241025102610271028 −1000 −500 0 500 1000 1500 2000 102310241025102610271028 1.4 GHz L i [W/Hz] −1000 −500 0 500 1000 1500 2000 B gB l = −0.01 l = 0.02 BL Lac FSRQ −28−26−24−22−20−18−16 M R −1000 −500 0 500 1000 1500 2000 B gB l = −0.04 l = −0.01 104210431044104510461047 (0.1−2.4) keV iL i [erg/s] −1000 −500 0 500 1000 1500 2000 B gB l = −0.03 l = 0.10 −0.20.00.20.40.60.81.0 _ (radio−optical) −1000 −500 0 500 1000 1500 2000 B gB l = −0.03 l = 0.06 0.5 1.0 1.5 2.0 2.5 _ (optical−X−ray) −1000 −500 0 500 1000 1500 2000 B gB l = −0.04 l = 0.14 0.40.50.60.70.80.91.0 _ (radio−X−ray) −1000 −500 0 500 1000 1500 2000 B gB l = 0.07 l = 0.16 luminosity spectral shape
A N D T H E B L A Z A R S E Q U E N C E / E N V E L O P E 12 13 14 15 16 17 44.0 44.5 45.0 45.5 46.0 46.5 47.0 12 13 14 15 16 17 log (ipeak ) [Hz] 44.0 44.5 45.0 45.5 46.0 46.5 47.0 log (iL i ) [erg s−1] BL Lac FSRQ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 z
A N D T H E B L A Z A R S E Q U E N C E / E N V E L O P E 12 13 14 15 16 17 44.0 44.5 45.0 45.5 46.0 46.5 47.0 12 13 14 15 16 17 log (ipeak ) [Hz] 44.0 44.5 45.0 45.5 46.0 46.5 47.0 log (iL i ) [erg s−1] BL Lac FSRQ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 z
T S O F P O W E R F U L R A D I O G A L A X I E S 3 C 4 4 9 , C y g A i m a g e s c o u r t e s y A U I / N R A O • Measured B gg for 239 morphologically- classified radio galaxies in the SDSS footprint • Radio galaxies have similar spatial correlation amplitudes to both types of blazars • FR I: 150 ± 533 Mpc -1.77 • FR II: 175 ± 364 Mpc -1.77 • FR I galaxies exist in similar environments to FR II galaxies • No strong evolution in B gg as a function of redshift
C H A N I S M S F O R D I F F E R E N T B L A Z A R C L U S T E R I N G S T R E N G T H S • Rapidly changing gas density or galaxy-galaxy interaction rate cause AGN in rich clusters to fade. This would transform more quasars into BL Lacs. • Inflow of gas/dust from nearby neighbors/ICM changes the accretion efficiency of the BH • FR II sources are less likely to be in high-density environments; increased external gas pressure in ICM suppresses collimated jet with advancing hot spot
probes large scale structure, constraining both cosmological parameters and the physics of galaxy evolution • The unification paradigm of blazars and radio galaxies can be indirectly probed by examining their Mpc-scale environments • Blazars do exist in moderately over-dense regions, but there is no significant difference between the BL Lac and FSRQ populations 0.0 0.2 0.4 0.6 0.8 Blazar redshift −2000 −1000 0 1000 2000 B gB 0.0 0.2 0.4 0.6 0.8 Blazar redshift −2000 −1000 0 1000 2000 B gB FSRQ BL Lac FSRQ 0.0 0.2 0.4 0.6 0 -1000 -2000 2000 1000 BgB z BL Lac