Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Ensemble of Exemplar-SVMs for Object Detection ...
Search
Yasser Souri
December 08, 2012
Programming
0
160
Ensemble of Exemplar-SVMs for Object Detection and Beyond
Yasser Souri
December 08, 2012
Tweet
Share
More Decks by Yasser Souri
See All by Yasser Souri
Intro to Variational AutoEncoder
yassersouri
0
65
Deep Learning Talk - Saverin
yassersouri
0
68
Deep Relative Attribute
yassersouri
1
62
Fine-grained Image Classification
yassersouri
1
84
Image Classification Intro
yassersouri
1
170
Real-time tracking of sports pitch markings
yassersouri
1
50
Other Decks in Programming
See All in Programming
AI時代のキャリアプラン「技術の引力」からの脱出と「問い」へのいざない / tech-gravity
minodriven
21
7.4k
副作用をどこに置くか問題:オブジェクト指向で整理する設計判断ツリー
koxya
1
620
プロダクトオーナーから見たSOC2 _SOC2ゆるミートアップ#2
kekekenta
0
230
16年目のピクシブ百科事典を支える最新の技術基盤 / The Modern Tech Stack Powering Pixiv Encyclopedia in its 16th Year
ahuglajbclajep
5
1k
AIで開発はどれくらい加速したのか?AIエージェントによるコード生成を、現場の評価と研究開発の評価の両面からdeep diveしてみる
daisuketakeda
1
2.5k
AI時代の認知負荷との向き合い方
optfit
0
170
[KNOTS 2026登壇資料]AIで拡張‧交差する プロダクト開発のプロセス および携わるメンバーの役割
hisatake
0
300
Vibe Coding - AI 驅動的軟體開發
mickyp100
0
180
「ブロックテーマでは再現できない」は本当か?
inc2734
0
1k
Oxlintはいいぞ
yug1224
5
1.4k
OCaml 5でモダンな並列プログラミングを Enjoyしよう!
haochenx
0
150
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
620
Featured
See All Featured
We Are The Robots
honzajavorek
0
170
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
210
Are puppies a ranking factor?
jonoalderson
1
2.7k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
230
Art, The Web, and Tiny UX
lynnandtonic
304
21k
[RailsConf 2023] Rails as a piece of cake
palkan
59
6.3k
Mobile First: as difficult as doing things right
swwweet
225
10k
Paper Plane (Part 1)
katiecoart
PRO
0
4.3k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
71k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
3
3.1k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Transcript
Ensemble of Exemplar- SVMs for Object Detection and Beyond Tomasz
Malisiewicz, Abhinav Gupta and Alexei A. Efros ICCV, 2011
Abstract
Abstract • Object Detection
Abstract • Object Detection • On par with state of
the art
Abstract • Object Detection • On par with state of
the art • Much simpler
Abstract • Object Detection • On par with state of
the art • Much simpler • At only a modest computational cost
Abstract • Object Detection • On par with state of
the art • Much simpler • At only a modest computational cost • Central benefit: explicit association between each detection and one training example
Motivation
Motivation • Common Computer Vision tasks:
Motivation • Common Computer Vision tasks: • Image classification
Motivation • Common Computer Vision tasks: • Image classification •
Object detection
Motivation • Common Computer Vision tasks: • Image classification •
Object detection • bounding box
Motivation - Object Detection • Can we reason with bounding
box? BUS
Motivation - How can we reason?
Motivation - How can we reason? • Obtain Association with
a very similar exemplar from training
Motivation - How can we reason? • Obtain Association with
a very similar exemplar from training • This is what mind does
Motivation - How can we reason? • Obtain Association with
a very similar exemplar from training • This is what mind does • Enough data is currently available
Motivation - How can we reason? • Obtain Association with
a very similar exemplar from training • This is what mind does • Enough data is currently available • Any kind of meta data could be transferred
Exemplars
Motivation - Exemplar Theory
Motivation - Exemplar Theory • Associating a new instance with
something seen in the past
Motivation - Exemplar Theory • Associating a new instance with
something seen in the past • Exemplar theory in cognitive psychology
Motivation - Exemplar Theory • Associating a new instance with
something seen in the past • Exemplar theory in cognitive psychology • Case-based reasoning in AI
Motivation - Exemplar Theory • Associating a new instance with
something seen in the past • Exemplar theory in cognitive psychology • Case-based reasoning in AI • Instance-based learning in ML
Exemplar Reasoning is Non-parametric
Exemplar Reasoning is Non-parametric KNN: non-parametric
Exemplar Reasoning is Non-parametric KNN: non-parametric SVM: parametric
Exemplar Theory in Computer Vision
Exemplar Theory in Computer Vision • Object Alignment • Scene
Recognition • Image Parsing • Object Detection (not successful)
Non-parametric Object Detection
Non-parametric Object Detection • has not been competitive against discriminative
approaches
Non-parametric Object Detection • has not been competitive against discriminative
approaches • Why?
Non-parametric Object Detection • has not been competitive against discriminative
approaches • Why? • Massive Amount of Negative data
Non-parametric Object Detection • has not been competitive against discriminative
approaches • Why? • Massive Amount of Negative data • Classification vs Detection and KNN
Motivation - Negative Data
Motivation - Negative Data • Non-parametric methods are not suitable
Motivation - Negative Data • Non-parametric methods are not suitable
• Parametric methods handle large amount of negative data very well
Motivation - Negative Data • Non-parametric methods are not suitable
• Parametric methods handle large amount of negative data very well • HOG
Motivation - Negative Data • Non-parametric methods are not suitable
• Parametric methods handle large amount of negative data very well • HOG • DPM
Motivation - Negative Data • Non-parametric methods are not suitable
• Parametric methods handle large amount of negative data very well • HOG • DPM
Motivation - Negative Data
Motivation - Negative Data • SVM can handle negative data
parametrically
Motivation - Negative Data • SVM can handle negative data
parametrically • No negative data is stored (vs KNN)
Motivation - Negative Data • SVM can handle negative data
parametrically • No negative data is stored (vs KNN) • Used by HOG
Parametric Approach
Parametric Approach • Very good representation of negative data
Parametric Approach • Very good representation of negative data •
What about positive data?
Parametric Approach • Very good representation of negative data •
What about positive data? • implicit assumption that all positive examples are visually related
None
Parametric Approach • Very good representation of negative data •
What about positive data? • implicit assumption that all positive examples are visually related • results in over generalized models
Desirable Approach
Desirable Approach • All strengths of HOG/DPM
Desirable Approach • All strengths of HOG/DPM • powerful descriptor
Desirable Approach • All strengths of HOG/DPM • powerful descriptor
• discriminative framework
Desirable Approach • All strengths of HOG/DPM • powerful descriptor
• discriminative framework • handle massive amount of negatives
Desirable Approach • All strengths of HOG/DPM • powerful descriptor
• discriminative framework • handle massive amount of negatives • Not rigidly representing positives
Desirable Approach • All strengths of HOG/DPM • powerful descriptor
• discriminative framework • handle massive amount of negatives • Not rigidly representing positives • Good Association for meta-data transfer
Desirable Approach • All strengths of HOG/DPM • powerful descriptor
• discriminative framework • handle massive amount of negatives • Not rigidly representing positives • Good Association for meta-data transfer Parametric Negatives Non-parametric Positives
Exemplar-SVMs • Learn a model for each positive example •
HOG features • linear SVM classifier
Exemplar-SVMs • Learn a model for each positive example •
HOG features • linear SVM classifier
Exemplar-SVMs • Training • Single Positive example • Millions of
negative examples (sliding windows) - from images not containing any in-class instances
Large Scale Training • Use parallel Training on clusters
Exemplar-SVMs • Testing • Each sliding window is given to
all Exemplar-SVMs • Highest score is the detection
Qualitative Examples
None
None
None
None
None
None
None
Meta-Data Transfer
None
None
None
None
None
Thank You Any Questions?