Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Ensemble of Exemplar-SVMs for Object Detection ...
Search
Yasser Souri
December 08, 2012
Programming
0
150
Ensemble of Exemplar-SVMs for Object Detection and Beyond
Yasser Souri
December 08, 2012
Tweet
Share
More Decks by Yasser Souri
See All by Yasser Souri
Intro to Variational AutoEncoder
yassersouri
0
64
Deep Learning Talk - Saverin
yassersouri
0
55
Deep Relative Attribute
yassersouri
1
60
Fine-grained Image Classification
yassersouri
1
82
Image Classification Intro
yassersouri
1
140
Real-time tracking of sports pitch markings
yassersouri
1
49
Other Decks in Programming
See All in Programming
Cline指示通りに動かない? AI小説エージェントで学ぶ指示書の書き方と自動アップデートの仕組み
kamomeashizawa
1
580
XP, Testing and ninja testing
m_seki
3
190
『自分のデータだけ見せたい!』を叶える──Laravel × Casbin で複雑権限をスッキリ解きほぐす 25 分
akitotsukahara
1
550
Deep Dive into ~/.claude/projects
hiragram
8
1.5k
明示と暗黙 ー PHPとGoの インターフェイスの違いを知る
shimabox
2
320
アンドパッドの Go 勉強会「 gopher 会」とその内容の紹介
andpad
0
260
童醫院敏捷轉型的實踐經驗
cclai999
0
190
ASP.NETアプリケーションのモダナイズ インフラ編
tomokusaba
1
410
Is Xcode slowly dying out in 2025?
uetyo
1
190
AIエージェントはこう育てる - GitHub Copilot Agentとチームの共進化サイクル
koboriakira
0
380
Webの外へ飛び出せ NativePHPが切り拓くPHPの未来
takuyakatsusa
2
360
Rubyでやりたい駆動開発 / Ruby driven development
chobishiba
1
410
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.8k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Why Our Code Smells
bkeepers
PRO
337
57k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.3k
Unsuck your backbone
ammeep
671
58k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Building a Modern Day E-commerce SEO Strategy
aleyda
42
7.3k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.8k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Git: the NoSQL Database
bkeepers
PRO
430
65k
Transcript
Ensemble of Exemplar- SVMs for Object Detection and Beyond Tomasz
Malisiewicz, Abhinav Gupta and Alexei A. Efros ICCV, 2011
Abstract
Abstract • Object Detection
Abstract • Object Detection • On par with state of
the art
Abstract • Object Detection • On par with state of
the art • Much simpler
Abstract • Object Detection • On par with state of
the art • Much simpler • At only a modest computational cost
Abstract • Object Detection • On par with state of
the art • Much simpler • At only a modest computational cost • Central benefit: explicit association between each detection and one training example
Motivation
Motivation • Common Computer Vision tasks:
Motivation • Common Computer Vision tasks: • Image classification
Motivation • Common Computer Vision tasks: • Image classification •
Object detection
Motivation • Common Computer Vision tasks: • Image classification •
Object detection • bounding box
Motivation - Object Detection • Can we reason with bounding
box? BUS
Motivation - How can we reason?
Motivation - How can we reason? • Obtain Association with
a very similar exemplar from training
Motivation - How can we reason? • Obtain Association with
a very similar exemplar from training • This is what mind does
Motivation - How can we reason? • Obtain Association with
a very similar exemplar from training • This is what mind does • Enough data is currently available
Motivation - How can we reason? • Obtain Association with
a very similar exemplar from training • This is what mind does • Enough data is currently available • Any kind of meta data could be transferred
Exemplars
Motivation - Exemplar Theory
Motivation - Exemplar Theory • Associating a new instance with
something seen in the past
Motivation - Exemplar Theory • Associating a new instance with
something seen in the past • Exemplar theory in cognitive psychology
Motivation - Exemplar Theory • Associating a new instance with
something seen in the past • Exemplar theory in cognitive psychology • Case-based reasoning in AI
Motivation - Exemplar Theory • Associating a new instance with
something seen in the past • Exemplar theory in cognitive psychology • Case-based reasoning in AI • Instance-based learning in ML
Exemplar Reasoning is Non-parametric
Exemplar Reasoning is Non-parametric KNN: non-parametric
Exemplar Reasoning is Non-parametric KNN: non-parametric SVM: parametric
Exemplar Theory in Computer Vision
Exemplar Theory in Computer Vision • Object Alignment • Scene
Recognition • Image Parsing • Object Detection (not successful)
Non-parametric Object Detection
Non-parametric Object Detection • has not been competitive against discriminative
approaches
Non-parametric Object Detection • has not been competitive against discriminative
approaches • Why?
Non-parametric Object Detection • has not been competitive against discriminative
approaches • Why? • Massive Amount of Negative data
Non-parametric Object Detection • has not been competitive against discriminative
approaches • Why? • Massive Amount of Negative data • Classification vs Detection and KNN
Motivation - Negative Data
Motivation - Negative Data • Non-parametric methods are not suitable
Motivation - Negative Data • Non-parametric methods are not suitable
• Parametric methods handle large amount of negative data very well
Motivation - Negative Data • Non-parametric methods are not suitable
• Parametric methods handle large amount of negative data very well • HOG
Motivation - Negative Data • Non-parametric methods are not suitable
• Parametric methods handle large amount of negative data very well • HOG • DPM
Motivation - Negative Data • Non-parametric methods are not suitable
• Parametric methods handle large amount of negative data very well • HOG • DPM
Motivation - Negative Data
Motivation - Negative Data • SVM can handle negative data
parametrically
Motivation - Negative Data • SVM can handle negative data
parametrically • No negative data is stored (vs KNN)
Motivation - Negative Data • SVM can handle negative data
parametrically • No negative data is stored (vs KNN) • Used by HOG
Parametric Approach
Parametric Approach • Very good representation of negative data
Parametric Approach • Very good representation of negative data •
What about positive data?
Parametric Approach • Very good representation of negative data •
What about positive data? • implicit assumption that all positive examples are visually related
None
Parametric Approach • Very good representation of negative data •
What about positive data? • implicit assumption that all positive examples are visually related • results in over generalized models
Desirable Approach
Desirable Approach • All strengths of HOG/DPM
Desirable Approach • All strengths of HOG/DPM • powerful descriptor
Desirable Approach • All strengths of HOG/DPM • powerful descriptor
• discriminative framework
Desirable Approach • All strengths of HOG/DPM • powerful descriptor
• discriminative framework • handle massive amount of negatives
Desirable Approach • All strengths of HOG/DPM • powerful descriptor
• discriminative framework • handle massive amount of negatives • Not rigidly representing positives
Desirable Approach • All strengths of HOG/DPM • powerful descriptor
• discriminative framework • handle massive amount of negatives • Not rigidly representing positives • Good Association for meta-data transfer
Desirable Approach • All strengths of HOG/DPM • powerful descriptor
• discriminative framework • handle massive amount of negatives • Not rigidly representing positives • Good Association for meta-data transfer Parametric Negatives Non-parametric Positives
Exemplar-SVMs • Learn a model for each positive example •
HOG features • linear SVM classifier
Exemplar-SVMs • Learn a model for each positive example •
HOG features • linear SVM classifier
Exemplar-SVMs • Training • Single Positive example • Millions of
negative examples (sliding windows) - from images not containing any in-class instances
Large Scale Training • Use parallel Training on clusters
Exemplar-SVMs • Testing • Each sliding window is given to
all Exemplar-SVMs • Highest score is the detection
Qualitative Examples
None
None
None
None
None
None
None
Meta-Data Transfer
None
None
None
None
None
Thank You Any Questions?