Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Ensemble of Exemplar-SVMs for Object Detection ...
Search
Yasser Souri
December 08, 2012
Programming
0
150
Ensemble of Exemplar-SVMs for Object Detection and Beyond
Yasser Souri
December 08, 2012
Tweet
Share
More Decks by Yasser Souri
See All by Yasser Souri
Intro to Variational AutoEncoder
yassersouri
0
62
Deep Learning Talk - Saverin
yassersouri
0
52
Deep Relative Attribute
yassersouri
1
54
Fine-grained Image Classification
yassersouri
1
79
Image Classification Intro
yassersouri
1
130
Real-time tracking of sports pitch markings
yassersouri
1
46
Other Decks in Programming
See All in Programming
「とりあえず動く」コードはよい、「読みやすい」コードはもっとよい / Code that 'just works' is good, but code that is 'readable' is even better.
mkmk884
3
500
MCP with Cloudflare Workers
yusukebe
2
220
PHPUnitしか使ってこなかった 一般PHPerがPestに乗り換えた実録
mashirou1234
0
230
CSC305 Lecture 26
javiergs
PRO
0
140
テスト自動化失敗から再挑戦しチームにオーナーシップを委譲した話/STAC2024 macho
ma_cho29
1
1.3k
アクターシステムに頼らずEvent Sourcingする方法について
j5ik2o
4
290
From Translations to Multi Dimension Entities
alexanderschranz
2
130
なまけものオバケたち -PHP 8.4 に入った新機能の紹介-
tanakahisateru
1
120
Mermaid x AST x 生成AI = コードとドキュメントの完全同期への道
shibuyamizuho
0
160
PHPとAPI Platformで作る本格的なWeb APIアプリケーション(入門編) / phpcon 2024 Intro to API Platform
ttskch
0
270
Security_for_introducing_eBPF
kentatada
0
110
fs2-io を試してたらバグを見つけて直した話
chencmd
0
240
Featured
See All Featured
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
Done Done
chrislema
181
16k
Product Roadmaps are Hard
iamctodd
PRO
49
11k
RailsConf 2023
tenderlove
29
940
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
2
290
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.5k
Practical Orchestrator
shlominoach
186
10k
Faster Mobile Websites
deanohume
305
30k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
6
520
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Building Applications with DynamoDB
mza
91
6.1k
Six Lessons from altMBA
skipperchong
27
3.5k
Transcript
Ensemble of Exemplar- SVMs for Object Detection and Beyond Tomasz
Malisiewicz, Abhinav Gupta and Alexei A. Efros ICCV, 2011
Abstract
Abstract • Object Detection
Abstract • Object Detection • On par with state of
the art
Abstract • Object Detection • On par with state of
the art • Much simpler
Abstract • Object Detection • On par with state of
the art • Much simpler • At only a modest computational cost
Abstract • Object Detection • On par with state of
the art • Much simpler • At only a modest computational cost • Central benefit: explicit association between each detection and one training example
Motivation
Motivation • Common Computer Vision tasks:
Motivation • Common Computer Vision tasks: • Image classification
Motivation • Common Computer Vision tasks: • Image classification •
Object detection
Motivation • Common Computer Vision tasks: • Image classification •
Object detection • bounding box
Motivation - Object Detection • Can we reason with bounding
box? BUS
Motivation - How can we reason?
Motivation - How can we reason? • Obtain Association with
a very similar exemplar from training
Motivation - How can we reason? • Obtain Association with
a very similar exemplar from training • This is what mind does
Motivation - How can we reason? • Obtain Association with
a very similar exemplar from training • This is what mind does • Enough data is currently available
Motivation - How can we reason? • Obtain Association with
a very similar exemplar from training • This is what mind does • Enough data is currently available • Any kind of meta data could be transferred
Exemplars
Motivation - Exemplar Theory
Motivation - Exemplar Theory • Associating a new instance with
something seen in the past
Motivation - Exemplar Theory • Associating a new instance with
something seen in the past • Exemplar theory in cognitive psychology
Motivation - Exemplar Theory • Associating a new instance with
something seen in the past • Exemplar theory in cognitive psychology • Case-based reasoning in AI
Motivation - Exemplar Theory • Associating a new instance with
something seen in the past • Exemplar theory in cognitive psychology • Case-based reasoning in AI • Instance-based learning in ML
Exemplar Reasoning is Non-parametric
Exemplar Reasoning is Non-parametric KNN: non-parametric
Exemplar Reasoning is Non-parametric KNN: non-parametric SVM: parametric
Exemplar Theory in Computer Vision
Exemplar Theory in Computer Vision • Object Alignment • Scene
Recognition • Image Parsing • Object Detection (not successful)
Non-parametric Object Detection
Non-parametric Object Detection • has not been competitive against discriminative
approaches
Non-parametric Object Detection • has not been competitive against discriminative
approaches • Why?
Non-parametric Object Detection • has not been competitive against discriminative
approaches • Why? • Massive Amount of Negative data
Non-parametric Object Detection • has not been competitive against discriminative
approaches • Why? • Massive Amount of Negative data • Classification vs Detection and KNN
Motivation - Negative Data
Motivation - Negative Data • Non-parametric methods are not suitable
Motivation - Negative Data • Non-parametric methods are not suitable
• Parametric methods handle large amount of negative data very well
Motivation - Negative Data • Non-parametric methods are not suitable
• Parametric methods handle large amount of negative data very well • HOG
Motivation - Negative Data • Non-parametric methods are not suitable
• Parametric methods handle large amount of negative data very well • HOG • DPM
Motivation - Negative Data • Non-parametric methods are not suitable
• Parametric methods handle large amount of negative data very well • HOG • DPM
Motivation - Negative Data
Motivation - Negative Data • SVM can handle negative data
parametrically
Motivation - Negative Data • SVM can handle negative data
parametrically • No negative data is stored (vs KNN)
Motivation - Negative Data • SVM can handle negative data
parametrically • No negative data is stored (vs KNN) • Used by HOG
Parametric Approach
Parametric Approach • Very good representation of negative data
Parametric Approach • Very good representation of negative data •
What about positive data?
Parametric Approach • Very good representation of negative data •
What about positive data? • implicit assumption that all positive examples are visually related
None
Parametric Approach • Very good representation of negative data •
What about positive data? • implicit assumption that all positive examples are visually related • results in over generalized models
Desirable Approach
Desirable Approach • All strengths of HOG/DPM
Desirable Approach • All strengths of HOG/DPM • powerful descriptor
Desirable Approach • All strengths of HOG/DPM • powerful descriptor
• discriminative framework
Desirable Approach • All strengths of HOG/DPM • powerful descriptor
• discriminative framework • handle massive amount of negatives
Desirable Approach • All strengths of HOG/DPM • powerful descriptor
• discriminative framework • handle massive amount of negatives • Not rigidly representing positives
Desirable Approach • All strengths of HOG/DPM • powerful descriptor
• discriminative framework • handle massive amount of negatives • Not rigidly representing positives • Good Association for meta-data transfer
Desirable Approach • All strengths of HOG/DPM • powerful descriptor
• discriminative framework • handle massive amount of negatives • Not rigidly representing positives • Good Association for meta-data transfer Parametric Negatives Non-parametric Positives
Exemplar-SVMs • Learn a model for each positive example •
HOG features • linear SVM classifier
Exemplar-SVMs • Learn a model for each positive example •
HOG features • linear SVM classifier
Exemplar-SVMs • Training • Single Positive example • Millions of
negative examples (sliding windows) - from images not containing any in-class instances
Large Scale Training • Use parallel Training on clusters
Exemplar-SVMs • Testing • Each sliding window is given to
all Exemplar-SVMs • Highest score is the detection
Qualitative Examples
None
None
None
None
None
None
None
Meta-Data Transfer
None
None
None
None
None
Thank You Any Questions?