Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learning Talk - Saverin
Search
Yasser Souri
May 09, 2016
Technology
0
68
Deep Learning Talk - Saverin
Deep Learning Introduction Talk @ Saverin
Yasser Souri
May 09, 2016
Tweet
Share
More Decks by Yasser Souri
See All by Yasser Souri
Intro to Variational AutoEncoder
yassersouri
0
65
Deep Relative Attribute
yassersouri
1
62
Fine-grained Image Classification
yassersouri
1
84
Image Classification Intro
yassersouri
1
170
Real-time tracking of sports pitch markings
yassersouri
1
50
Ensemble of Exemplar-SVMs for Object Detection and Beyond
yassersouri
0
160
Other Decks in Technology
See All in Technology
Redshift認可、アップデートでどう変わった?
handy
1
140
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
17k
Digitization部 紹介資料
sansan33
PRO
1
6.5k
次世代AIコーディング:OpenAI Codex の最新動向 進行スライド/nikkei-tech-talk-40
nikkei_engineer_recruiting
0
140
2025-12-27 Claude CodeでPRレビュー対応を効率化する@機械学習社会実装勉強会第54回
nakamasato
4
1.4k
スクラムマスターが スクラムチームに入って取り組む5つのこと - スクラムガイドには書いてないけど入った当初から取り組んでおきたい大切なこと -
scrummasudar
3
2k
「リリースファースト」の実感を届けるには 〜停滞するチームに変化を起こすアプローチ〜 #RSGT2026
kintotechdev
0
910
SES向け、生成AI時代におけるエンジニアリングとセキュリティ
longbowxxx
0
320
Kaggleコンペティション「MABe Challenge - Social Action Recognition in Mice」振り返り
yu4u
1
180
AI Agent Standards and Protocols: a Walkthrough of MCP, A2A, and more...
glaforge
0
260
AI時代のアジャイルチームを目指して ー スクラムというコンフォートゾーンからの脱却 ー / Toward Agile Teams in the Age of AI
takaking22
11
6.5k
kintone開発のプラットフォームエンジニアの紹介
cybozuinsideout
PRO
0
520
Featured
See All Featured
Highjacked: Video Game Concept Design
rkendrick25
PRO
1
270
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.2k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Raft: Consensus for Rubyists
vanstee
141
7.3k
The Cult of Friendly URLs
andyhume
79
6.8k
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
41
Making Projects Easy
brettharned
120
6.5k
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
190
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
51
Accessibility Awareness
sabderemane
0
35
Six Lessons from altMBA
skipperchong
29
4.1k
Transcript
Deep Learning Yasser Souri - Alireza Nourian http://sobhe.ir
Have you ever heard of ... Neural Networks
Have you ever heard of ... Deep Learning
Who is he?
Who is he? Jeff Dean, Google
Jeff Dean Creator of Map Reduce, Big Table, Google Crawler
Jeff Dean Creator of Map Reduce, Big Table, Google Crawler
Google Ads, Google Translator, ...
Jeff Dean Facts Compilers don't warn Jeff Dean. Jeff Dean
warns compilers.
Jeff Dean’s Calculator
Jeff Dean’s Current Role Google Brain
DeepMind In 2014, Google acquired DeepMind (a team of ~50)
for ~$ 500 million. And facebook wanted to buy them also.
What is Machine Learning? Problem 1: Given a sequence of
numbers, sort them
What is Machine Learning? Problem 1: Given a sequence of
Farsi characters, output Pinglish
What is Machine Learning? Problem 3: Give a grayscale 28x28
pixel image, identify what number it is.
What is Machine Learning? Problem 3: Give a grayscale 28x28
pixel image, identify what number it is.
What is Machine Learning? x f(x) y Classic
What is Machine Learning? x f(x) y g(x) y’ h(x)
y” Classic
How to Solve Machine Learning Problems Data = (x, y)
Classic
How to Solve Machine Learning Problems Data = (x, y)
y = f(x) Classic (x, y) f(x)
How to Solve Machine Learning Problems Data = (x, y)
y = f(x) Learn the parameters Classic (x, y) f(x; w)
How to Solve Machine Learning Problems Data = (x, y)
y = f(x) Learn the parameters Can x be the raw pixels? Classic (x, y) f(x; w) Features
How to Solve Machine Learning Problems Data = (x, y)
y = f(x) Learn the parameters Can x be the raw pixels? Classic (x, y) f(x; w) Features O(#features) ~ O(#parameters)
Machine Learning Demo http://playground.tensorflow.org/ Classic
Deep Learning Basics Learn from raw data y = f(g(h(
… (x) ))) Deep
Deep Learning Learn from raw data Number of parameters are
much larger y = f(g(h( … (x) ))) Deep
Deep Learning Learn from raw data Number of parameters are
much larger You need more data to learn y = f(g(h( … (x) ))) Deep
Problems being solved with deep learning Deep
Problems being solved with deep learning Deep
One to one: Image Classification Deep
One to one: Image Classification Deep
Problems being solved with deep learning
One to Many: Image Captioning Describing Images:
Fun With ConvNets Describing Images:
Problems being solved with deep learning
May to One: Generating Images Generating Images:
May to One: Generating Images Generating Images:
Problems being solved with deep learning
Statistical Machine Translation
End-to-End Neural Machine Translation (1) Hirschberg, J. & Manning, C.
D. Advances in natural language processing, Science, 2015, 349, 261-266
None
Learning to Execute
Deep Reinforcement Learning
Demo Videos https://www.youtube.com/watch?v=ePv0Fs9cGgU https://www.youtube.com/watch?v=Q70ulPJW3Gk
Fun With ConvNets Modifying images:
Fun With ConvNets Style transfer:
Fun With ConvNets Style transfer:
Fun With ConvNets Colorization:
Fun With ConvNets Colorization:
Fun With ConvNets Colorization:
Fun With ConvNets Colorization:
Fun With ConvNets Colorization:
Fun With ConvNets Colorization:
Fun With ConvNets Colorization:
Growing Use of Deep Learning at Google Jeff Dean &
Oriol Vinyals, “ Large Scale Distributed Systems for Training Neural Networ”, NIPS 2015.
Deep Learning Tools