Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Applying oCPC algorithm for production
Search
yoppi
August 12, 2018
Technology
2
800
Applying oCPC algorithm for production
yoppi
August 12, 2018
Tweet
Share
More Decks by yoppi
See All by yoppi
solving of multi-armed bandit problem in advertisement recommendation
yoppi
2
7.9k
recommendation system with document similarity
yoppi
0
3.2k
RailsはRubyだ
yoppi
0
260
Other Decks in Technology
See All in Technology
『ソフトウェア』で『リアル』を動かす:クレーンゲームからデータ基盤までの統一アーキテクチャ / アーキテクチャConference 2025
genda
0
1.8k
Claude Code はじめてガイド -1時間で学べるAI駆動開発の基本と実践-
oikon48
12
6k
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
15k
プラットフォームエンジニアリングとは何であり、なぜプラットフォームエンジニアリングなのか
doublemarket
0
310
巨大モノリスのリプレイス──機能整理とハイブリッドアーキテクチャで挑んだ再構築戦略
zozotech
PRO
0
390
type-challenges を全問解いたのでエッセンスと推し問題を紹介してみる
kworkdev
PRO
0
120
事業状況で変化する最適解。進化し続ける開発組織とアーキテクチャ
caddi_eng
1
8.8k
.NET 10のEntity Framework Coreの新機能
htkym
0
130
.NET 10のASP. NET Core注目の新機能
tomokusaba
0
140
PostgreSQL で列データ”ファイル”を利用する ~Arrow/Parquet を統合したデータベースの作成~
kaigai
0
180
adk-samples に学ぶデータ分析 LLM エージェント開発
na0
3
850
Kill the Vibe?Architecture in the age of AI
stoth
1
120
Featured
See All Featured
For a Future-Friendly Web
brad_frost
180
10k
How to Ace a Technical Interview
jacobian
280
24k
Building an army of robots
kneath
306
46k
A designer walks into a library…
pauljervisheath
210
24k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
The Invisible Side of Design
smashingmag
302
51k
A better future with KSS
kneath
239
18k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Bash Introduction
62gerente
615
210k
[RailsConf 2023] Rails as a piece of cake
palkan
57
6.1k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Transcript
OCPCΛຊ൪ڥʹద༻͢ Δ·Ͱ @YOPPIBLOG ADOKEN#1
ࣗݾհ IMPORT “GITHUB.COM/YOPPI" ▸ ٛా തҰ @yoppiblog ▸ Speee, Inc.
Engineer ▸ ࠷ۙΞυςΫք۾ʹ͍ͯɺࠓUZOUͷϨίϝϯυΤϯδ ϯͱ͔࡞͍ͬͯ·͢ ▸ Go͕͖
OCPCΛຊ൪ڥʹద༻͢Δ·Ͱ ࠓͷ͓ ▸ oCPCʹ͍ͭͯ ▸ ௐࠪ ▸ Ϟσϧͷ࡞ ▸ γϛϡϨʔγϣϯʹΑΔݕূ
▸ ຊ൪ڥͰͷ࣮ ▸ A/BςετͰͷϞχλϦϯάͱੳ ▸ ݱঢ়ͷ՝ͱࠓޙͷํ
OCPCΛຊ൪ڥʹద༻͢Δ·Ͱ ࠓͷ͓ ▸ oCPCʹ͍ͭͯ ▸ ௐࠪ ▸ Ϟσϧͷ࡞ ▸ γϛϡϨʔγϣϯʹΑΔݕূ
▸ ຊ൪ڥͰͷ࣮ ▸ A/BςετͰͷϞχλϦϯάͱੳ ▸ ݱঢ়ͷ՝ͱࠓޙͷํ
OCPCʹ͍ͭͯ OCPC ▸ Optimize CPCͷݺশ ▸ ೖߘ͞ΕͨࠂͷඪCPAͷୡͱ৴ֹۚͷ࠷େԽΛࢦͨ͢ΊʹࣗಈͰCPCೖ ࡳ͢Δػೳ ▸ جຊతʹCPA͕ѱԽ͢ΔͱͦͷΞυωοτϫʔΫͰͷ৴͕ࢭ·Δ
▸ CPAΛୡͤ͞Α͏ͱCPCΛखಈௐͰ͖ͳ͘ͳ͍͕৴໘͕ଟྔͳͨΊਓख Ͱͷௐඇݱ࣮త ▸ ސ٬ͷຬΛ্͢ΔͨΊʹϓϩμΫτͷ࣭ʢརӹʣΛ্͢ΔͨΊʹػೳͱ͠ ࣮ͯ͞Ε͍ͯΔ͖ ▸ ͱ͍͑ඪCPAΛݱ࣮ʹ͙ͦΘͳֹ͍ۚͰઃఆ͞ΕͨͷΛͳΜͱ͔͢ΔػೳͰ ͳ͍͜ͱલఏ
OCPCʹ͍ͭͯ OCPCΛ࣮͍ͯ͠Δڝ߹ଞࣾ ▸ جຊతʹCPAͷվળٴͼӡ༻ͷݮͱ͍͏Ґஔ͚ͮͰ UZOUͦ͜Λΰʔϧͱ͢ΔͷมΘΒͳ͍ ▸ Outbrain ▸ Logly ▸
Smart News ▸ LINE Ads
OCPCΛຊ൪ڥʹద༻͢Δ·Ͱ ࠓͷ͓ ▸ oCPCʹ͍ͭͯ ▸ ௐࠪ ▸ Ϟσϧͷ࡞ ▸ γϛϡϨʔγϣϯʹΑΔݕূ
▸ ຊ൪ڥͰͷ࣮ ▸ A/BςετͰͷϞχλϦϯάͱੳ ▸ ࠓޙͷ՝ͱ·ͱΊ
ௐࠪ ௐࠪ ▸ طଘͷϓϩμΫτจͷௐࠪ ▸ จΛย͔ͬΒಡΜͰ͍͘ ▸ “Optimal Real-Time Bidding
for Display Advertising” ͔ͳΓے͕ྑ͍ํ๏ͰࠓճͷϞσϧͷϕʔεʹͳ͍ͬͯΔ ▸ http://wnzhang.net/papers/ortb-kdd.pdf
ௐࠪ OPTIMAL REAL-TIME BIDDING FOR DISPLAY ADVERTISING ▸ ੍͖݅ඇઢܗ࠷దԽΛద༻ͯ͠RTBΛղ͍͍ͯΔ ▸
ొਓ ▸ Winning RateʢeCPM͕͍͘ΒͳΒଞͷࠂʹউͬͯ໘ʹͰΔͷ͔ʣ ▸ ༧ଌCTRʢະདྷͷCTRʣ ▸ ༧ଌCVRʢະདྷͷCVRʣ ▸ ϥάϥϯδϡະఆʢϥάϥϯδϡະఆ๏Ͱղ͘ࡍʹ༩͞Ε ͑Δมʣ
OCPCΛຊ൪ڥʹద༻͢Δ·Ͱ ࠓͷ͓ ▸ oCPCʹ͍ͭͯ ▸ ௐࠪ ▸ Ϟσϧͷ࡞ ▸ γϛϡϨʔγϣϯʹΑΔݕূ
▸ ຊ൪ڥͰͷ࣮ ▸ A/BςετͰͷϞχλϦϯάͱੳ ▸ ݱঢ়ͷ՝ͱ·ͱΊ
Ϟσϧͷ࡞ Ϟσϧ࡞ ▸ ੍͖ඇઢܗ࠷దԽͱͯ͠ཧϞσϧΛ࡞ͬͯղ͘ ▸ తؔɺ੍݅Λઃఆ͠ɺ੍݅Λຬͨͭͭ͠ తؔΛ࠷େԽ͢ΔʢCPCՁ֨Λ࠷దԽ͢Δʣ͜ͱ͕ ΰʔϧʹͳΔ f(bix )
= T N ∑ i=1 bix W(bix , ˜ θix ) ˜ θix pi T N ∑ i=1 bix W(bix , ˜ θix ) ˜ θix pi ≤ rx T N ∑ i=1 θix W(bix , ˜ θix ) ˜ θix pi తؔ ੍݅
Ϟσϧͷ࡞ ੍͖ඇઢܗ࠷దԽ ▸ ࠷దԽͷ͏ͪඇઢܗͳͷΛඇઢܗ࠷దԽͱݺ Ϳ ▸ ϥάϥϯδϡະఆ๏ͰύϥϝʔλΛٻΊΔ͜ͱͰۙࣅ ղΛಘΒΕΔ ▸ ࠓճeCPMউϞσϧΛ
ͱஔ͍͍ͯΔͷͰತؔ ͱͳΓχϡʔτϯ๏ͰϥάϥϯδϡະఆΛٻΊ͍ͯ Δ y = x x + l
Ϟσϧͷ࡞ ECPMউϞσϧ ▸ ͲͷeCPMͳΒ৴͞ΕΔʢΦʔΫγϣϯʹউͭʣͰ͋Ζ͏ Ϟσϧ ▸ త͕ؔತؔʹͳΔΑ͏ͳ୯७ͳඇઢܗؔ༻͍ͯ࠷খ ೋ๏Ͱ࡞ ▸ ತؔඍՄೳʹͳΓ࠷దԽܭࢉͰۃܭࢉʹ͓͍ͯ
ߴʹऩଋͤ͞͞ΕΔχϡʔτϯ๏͕͑ΔͨΊ
Ϟσϧͷ࡞ CTR༧ଌɾCVR༧ଌ ▸ ະདྷͷbidՁ֨Λೖࡳ͢ΔͨΊະདྷͷCTRɾCVRΛࢉग़͢Δඞཁ͕͋Δ ▸ ࣄલ͔ΒࣄޙΛβ༻͍ͯࢉग़ͦ͠ΕΛ༧ଌͱͯ͠༻ ▸ ৴ΞϧΰϦζϜͷҰͭͰଟόϯσΟοτ(Thompson Sampling)ʹͯ CTR༧ଌΛ͍ͯ͠Δͷ͕ͱͯੑೳ͕͍͍ͷͰͦͷ··ྲྀ༻͍ͯ͠Δ
▸ https://tech.speee.jp/entry/2018/08/08/090000 ▸ ECαΠτͰ͋ΔλΦόΦʢΞϦόόʣͷࠂϦΞϧλΠϜʹ༧ଌͯ͠ ͍Δ͜ͱΛհ͍ͯ͠Δ ▸ https://arxiv.org/pdf/1703.02091.pdf
OCPCΛຊ൪ڥʹద༻͢Δ·Ͱ ࠓͷ͓ ▸ oCPCʹ͍ͭͯ ▸ ௐࠪ ▸ Ϟσϧͷ࡞ ▸ γϛϡϨʔγϣϯʹΑΔݕূ
▸ ຊ൪ڥͰͷ࣮ ▸ A/BςετͰͷϞχλϦϯάͱੳ ▸ ࠓޙͷ՝ͱ·ͱΊ
γϛϡϨʔγϣϯʹΑΔݕূ γϛϡϨʔγϣϯʹΑΔݕূ ▸ ࣮ࡍʹoCPCϞσϧΛ࡞ͯ͠ҎԼͷ߲Λݕূ͢ΔͨΊʹγ ϛϡϨʔγϣϯʹ͓͍ͯݕূ ▸ ඪCPAΛୡͰ͖Δ͔Ͳ͏͔ ▸ ࠓճͷҰ൪ղܾ͍ͨ͠త ▸
৴ֹۚΛ࠷େԽͰ͖Δ͔Ͳ͏͔ ▸ ඪCPAΛୡ͍ͯͯ͠৴͞Εͳ͚ΕརӹʹͳΒ ͳ͍
γϛϡϨʔγϣϯʹΑΔݕূ γϛϡϨʔγϣϯͷ࣮ ▸ γϛϡϨʔγϣϯϑϨʔϜϫʔΫಛʹ࠾༻ͤͣɺPythonͰ ϑϧεΫϥονͰ࣮ ▸ ࡞ͨ͠ϞσϧͰCPCΛೖࡳͯ͠ ▸ ֤छϨίϝϯυΞϧΰϦζϜͰࠂΛநબ͠৴ ▸
Λ܁Γฦ͢୯७ͳͷ
γϛϡϨʔγϣϯʹΑΔݕূ ࣗલ࣮ͷPROS/CONS ▸ PROS ▸ ಛʹϥΠϒϥϦΛΘͣʹ࡞ͬͨͷͰॊೈʹ࣮Ͱ͖ͨ ▸ ࠂΛநબ͢Δ෦ͦͷޙͷclickͷൃੜΛ੍ޚ͢Δඞཁ͕͋Δͷ ͰUZOUͷγεςϜʹدΓఴͬͨͷΛ࡞ͬͨ΄͏͕ྑ͍ͷʹͳΔ ▸
CONS ▸ ൚༻ԽͰ͖Δͷʹͳ͍ͬͯͳ͍ ▸ ࠓճͷoCPCʹಛԽͨ͠࡞Γʹͳ͍ͬͯΔͷͰଞͷϓϩδΣΫτͰ ͦͷ··͑ͳ͍
ຊ൪ڥͰͷ࣮ ࣮ڥ ▸ γϛϡϨʔγϣϯͱಉ͘͡PythonͰ࣮ ▸ ϦΞϧλΠϜͰͷbid͓ͯ͠Βͣόονܗࣜ
ຊ൪ڥͰͷ࣮ ͳΔ࣮͘ߦ࣌ؒΛ͘͢Δ ▸ σʔλιʔε͔ΒͦΕͳΓͷσʔλΛऔಘ͢Δඞཁ͕͋Δ ▸ SQLΛͯ͠PythonଆͰͳΔ͘ܭࢉͤ͞ͳ͍Α͏ʹ ▸ ཧϞσϧΛܭࢉ͢Δͱ͖NumPy.arrayͰߴʹܭࢉͰ͖ΔΑ͏ʹ ▸ ѻ͏σʔλ͕ଟ͍ͷͰຊདྷͳΒO(mn)ڐ༰͢Δͱ͜ΖΛO(n)ʹ
͢ΔΑ͏ʹఆ߲ΛͳΔ͘ഉআ͢ΔΑ͏ʹ ▸ ͦͦχϡʔτϯ๏Λ࠾༻͍ͯ͠ΔͷͰऩଋ͕ͱͯߴʢ͍ͩ ͍ͨճͷΠςϨʔγϣϯͰऩଋ͍ͯ͠Δʣ
OCPCΛຊ൪ڥʹద༻͢Δ·Ͱ ࠓͷ͓ ▸ oCPCʹ͍ͭͯ ▸ ௐࠪ ▸ Ϟσϧͷ࡞ ▸ γϛϡϨʔγϣϯʹΑΔݕূ
▸ ຊ൪ڥͰͷ࣮ ▸ A/BςετͰͷϞχλϦϯάͱੳ ▸ ݱঢ়ͷ՝ͱ·ͱΊ
A/BςετͰͷಈ͖ํ A/BςετͰͷϞχλϦϯάͱੳ ▸ A/BςετΛ։࢝ͯ͠ɺ͏·͍ͬͯ͘Δࠂओͱ͏·͍ͬ͘ ͍͔ͯͳ͍ࠂओ͕ൃੜ ▸ ΞϧΰϦζϜۜͷؙͰͳ͍ͷͰԿ͕Өڹ͍ͯ͠Δͷ ͔ੳ͢Δඞཁ͕͋Δʢ͔͜͜Β͕Ή͠Ζຊ൪ ▸ ϞχλϦϯάμογϡϘʔυΛ࡞Γ࣌ͰՌΛੳ
▸ μογϡϘʔυҎ֎Ͱadhoc(Jupyter Notebook)Ͱ ੳ͍ͯ͠Δ
A/BςετͰͷಈ͖ํ ϞχλϦϯάπʔϧ ▸ dashΛ༻ ▸ Pythonʢflaskͷ্ʹಠࣗͷϑϨʔϜϫʔΫΛ͍ͤͯ Δʣ ▸ SPAͰಈ͘ʢReactͷίϯϙʔωϯτΛPythonͰॻ͚Δʣ SSR
OCPCΛຊ൪ڥʹద༻͢Δ·Ͱ ࠓͷ͓ ▸ oCPCʹ͍ͭͯ ▸ ௐࠪ ▸ Ϟσϧͷ࡞ ▸ γϛϡϨʔγϣϯʹΑΔݕূ
▸ ຊ൪ڥͰͷ࣮ ▸ A/BςετͰͷϞχλϦϯάͱੳ ▸ ݱঢ়ͷ՝ͱࠓޙͷํ
ݱঢ়ͷ՝ͱࠓޙͷํ A/Bςετ݁Ռ ▸ ͏·͍͍ͬͯ͘Δࠂओ͍Ε ▸ ඪCPAΛୡ͍ͯͯ͠৴ֹۚͰ͍ͯΔ ▸ ͏·͍͍ͬͯ͘ͳ͍ࠂओ͍Δ ▸ ඪCPAୡ͍ͯ͠Δ͕৴ֹ͕ۚग़͍ͯͳ͍ͷ͕ଟ
͍
ݱঢ়ͷ՝ͱࠓޙͷํ ͏·͍͍ͬͯ͘Δͷͱͦ͏Ͱͳ͍ͷΛੳ ▸ جຊతʹ͏·͍͍ͬͯ͘ͳ͍ͷ৴ྔ͕গͳ͍ ▸ ຊདྷ͋Δ͖ਅͷCPCʹಧ͔ͣෛ͚ͯ͠·ͬͯ৴͞Εͳ ͍ঢ়ଶ
ݱঢ়ͷ՝ͱࠓޙͷํ ਅͷCPCͱBID CPCͷൺֱ
ݱঢ়ͷ՝ͱࠓޙͷํ ਅͷCPCͱBID CPCͷൺֱ
ݱঢ়ͷ՝ͱࠓޙͷํ ਅͷCTRͱ༧ଌCTRͷ
ݱঢ়ͷ՝ͱࠓޙͷํ ਅͷCVRͱ༧ଌCVRɾ৴ֹׂۚ߹ͷ
ݱঢ়ͷ՝ͱࠓޙͷํ ECPMউϞσϧͷਫ਼ੳ
ݱঢ়ͷ՝ͱࠓޙͷํ ϞσϧͷվળҊ ▸ ༧ଌCVRͱeCPMউϞσϧ͕ѱͦ͏ͱݴ͑ΔͷͰ͜͜Λվળ͍ͯ͘͠ ▸ ༧ଌCVRͷࣄલͷվળ ▸ eCPMউϞσϧΛվળ ▸ StepModelͱConstantModelͷࠞ߹ϞσϧΘΓͱྑͦ͞͏͕ͩ
ತؔͰͳ͘ͳΔͷͰχϡʔτϯ๏͕͑͘ͳΓSGDʹΓସ ͑Δඞཁ͋Γ ▸ https://media.readthedocs.org/pdf/lmfit-py/0.9.3/lmfit-py.pdf
ڊਓͷݞʹΔ ͦͷଞͷࢀߟจݙ ▸ ࠷దԽೖ https://www.slideshare.net/tkm2261/ss-42149384 ▸ ͜ΕͳΒΘ͔Δ࠷దԽֶ https://www.amazon.co.jp/dp/ 4320017862/ ▸
ඇઢܗ࠷దԽͷجૅ https://www.amazon.co.jp/dp/4254280017/ ▸ ತؔʹ͍ͭͯ http://www2.kaiyodai.ac.jp/~yoshi-s/Lectures/ Optimization/2013/lecture_1.pdf