Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Tried to create a deployment pipeline of AutoML...
Search
youyo
March 26, 2019
Technology
0
86
Tried to create a deployment pipeline of AutoML Vision.
Tried to create a deployment pipeline of AutoML Vision.
youyo
March 26, 2019
Tweet
Share
More Decks by youyo
See All by youyo
家の快適度を計測してみた
youyo
1
210
Get started AWS CDK
youyo
0
110
API GatewayのWebSocket対応について
youyo
0
850
GCRと脆弱性検査
youyo
0
210
goodbye-ec2
youyo
0
710
それでも僕はzabbixと生きていく
youyo
1
480
About AWS Lambda and kintone
youyo
1
270
TerraformとWerckerとAWS Organizationsで始めるステージング・開発環境構築 / terraform-wercker-aws-organizations
youyo
1
34k
ServerlessのおさらいとIronFunctionsについて
youyo
0
460
Other Decks in Technology
See All in Technology
生成AIでセキュリティ運用を効率化する話
sakaitakeshi
0
540
Evolución del razonamiento matemático de GPT-4.1 a GPT-5 - Data Aventura Summit 2025 & VSCode DevDays
lauchacarro
0
160
AWSを利用する上で知っておきたい名前解決のはなし(10分版)
nagisa53
10
3k
Function Body Macros で、SwiftUI の View に Accessibility Identifier を自動付与する/Function Body Macros: Autogenerate accessibility identifiers for SwiftUI Views
miichan
2
180
大「個人開発サービス」時代に僕たちはどう生きるか
sotarok
20
9.8k
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
8.7k
DDD集約とサービスコンテキスト境界との関係性
pandayumi
3
280
[ JAWS-UG 東京 CommunityBuilders Night #2 ]SlackとAmazon Q Developerで 運用効率化を模索する
sh_fk2
3
380
なぜスクラムはこうなったのか?歴史が教えてくれたこと/Shall we explore the roots of Scrum
sanogemaru
5
1.6k
ChatGPTとPlantUML/Mermaidによるソフトウェア設計
gowhich501
1
130
Generative AI Japan 第一回生成AI実践研究会「AI駆動開発の現在地──ブレイクスルーの鍵を握るのはデータ領域」
shisyu_gaku
0
140
S3アクセス制御の設計ポイント
tommy0124
3
190
Featured
See All Featured
How to Ace a Technical Interview
jacobian
279
23k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.9k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
GraphQLとの向き合い方2022年版
quramy
49
14k
How to train your dragon (web standard)
notwaldorf
96
6.2k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
The World Runs on Bad Software
bkeepers
PRO
70
11k
The Pragmatic Product Professional
lauravandoore
36
6.9k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.4k
Transcript
AutoML Visionのモデル作成/デプロイパイプ ラインを作成してみた 石澤直人 @youyo_
Who am I func main() { profile := map[string]string{ "Name":
" 石澤直人 (@youyo_)", "Company": " ヘプタゴン", "Job": " エンジニア", "Language": "Go, Python...", "Likes": "AWS, GCP, Serverless...", } fmt.Println(profile) }
デモアプリ 孫悟空判定くん ノーマル,スーパーサイヤ人1,2,3,ゴッド,ブルーを判定してくれる GTほとんど見てないので4のことは忘れてた (権利的なアレで画像差し替えました)
今回お話ししたいのはAutoML Visionのこと やら精度のことではなく, 如何にしてモデルの 作成からデプロイまでを自動で行ったか
AutoML Vision Cloud AutoML Vision Alpha を使用すると、機械学習モデルをトレ ーニングして、自分の定義したラベルに従って画像を分類できま す。 アノテーション済み画像をそこまで用意できなくてもなんかそれっ
ぽい結果を返してくれるらしい 制約もちょいちょいありそうだけどお手軽そう まだアルファ でもGoogleなんだからいい感じに使えるんでしょ?
まず何をしたかったか 誰かが画像をアップロードしたら勝手に学習されてモデル作成され てLineBotサーバーが推論するモデルが最新のものに更新される
ボツ案 ぼんやりとしたこうすればいけるやろ~とか思ってたやつ
ここがダメだった1 CloudStorageには画像とその一覧とラベルを含むCSVを置く必要が あり、それらが置かれるバケット名は [ プロジェクトID]-vcm でな ければならないという制約があった。 CloudFunctionsは画像が揃ってからcsvが置かれたタイミングでだ け起動されれば十分なのに, ファイル拡張子での起動制御ができず
画像が置かれている段階でファンクションが起動しまくる結果とな った。 プログラム側でcsv以外だったら無視する処理すればいいっちゃい いけど綺麗じゃないしお金かかるし無駄。 バケットを複数用意して対応することにした。
ここがダメだった2 AutoML Visionでモデル作成が終了したタイミングでのイベント発 行など存在しない さらに実際には 学習スタート! で終わりではなく, データセット作 成/モデル作成(トレーニング)などに分かれていた。 ステート/オペレーション管理しつつ作成されたモデルIDを
Datastoreに保存するようにした。
結果こうなった
まとめ AutoML Vision自体は簡単に試せていい感じ 自動化を考えたときにもう一声欲しい感じ GCP好きなんでいい感じのアップデート待ってます