Upgrade to Pro — share decks privately, control downloads, hide ads and more …

ヒューマンコンピュテーションによる協調学習支援 / Human Computation for Collaborative Learning

Yukino Baba
PRO
June 16, 2018
2.3k

ヒューマンコンピュテーションによる協調学習支援 / Human Computation for Collaborative Learning

NEW EDUCATION EXPO 2018

Yukino Baba
PRO

June 16, 2018
Tweet

Transcript

  1. ؼُ٦وٝ
    ؝ٝؾُذ٦ءّٝ
    ח״׷⼿锃㷕统佄䴂
    꼛㜥ꨒ⛆瘰岚㣐㷕
    /FX&EVDBUJPO&YQP
    䎃剢傈

    View Slide

  2. 嚊銲
    չؼُ٦وٝ؝ٝؾُذ٦ءّٝպך倯岀׾欽ְ
    欰䖝ֶָ✼ְך㷕统׾⸔ֽさֲչ⼿锃㷕统պ׾佄䴂
    湱✼鐰⣣
    湱✼⡲㉏
    湱✼幐⵴
    Ⱏずⶼ⡲
    2/15

    View Slide

  3. ؼُ٦وٝ؝ٝؾُذ٦ءّٝ
    ! ؼُ٦وٝ؝ٝؾُذ٦ءّٝ
    ➂꟦ה➂䊨濼腉׾穈׫さ׻ׇ׷ֿהד
    չו׍׵ַ♧倯׌ֽדכ鍑ֽזְ㉏겗պך鍑寸׾湡䭷ׅծ
    ➂䊨濼腉ך♧ⴓꅿ
    ➂䊨濼腉ח״׷㉏겗鍑寸׾
    ➂꟦ָ佄䴂
    ➂꟦ח״׷㉏겗鍑寸׾
    ➂䊨濼腉ָ佄䴂
    ➂꟦ה➂䊨濼腉ך穈׫さ׻ׇדꨇ׃ְ㉏겗׾鍑寸
    3/15

    View Slide

  4. ؼُ٦وٝ؝ٝؾُذ٦ءّٝך⢽SF$"15$)"
    ➂䊨濼腉ך➿׻׶ח➂꟦ָ俑㶵钠陎
    ˑNPSPJEH˒
    ˑNPSSJOH˒
    ˑNPSOJOH˒
    4UFQ剅硂⚥ך俑㶵׾אך0$3ءأذيח钠陎ׇׁ׷
    4UFQ穠卓ָ♶♧荜ךהֹ➂꟦ח㉏ְさ׻ׇ׷
    L. von Ahn et al.: reCAPTCHA: Human-based character recognition via web security measures, In
    Science, 2008.
    4/15

    View Slide

  5. -tap to take a photo.
    -tap to begin recording
    your question and again to stop.


    side,
    User ?
    Database -
    al Client
    mote Services and Worker Interface
    ؼُ٦وٝ؝ٝؾُذ٦ءّٝך⢽7J[8J[
    ➂䊨濼腉ך➿׻׶ח➂꟦ָ鋔鋙ꥺְָ罏׾佄䴂
    Ύءأذيⰻ鿇
    ך➂꟦ָ㔐瘶
    J. Bigham et al.: VizWiz: Nearly real-time answers to visual questions, In UIST, 2010.
    ΍ِ٦ؠָ颵㉏׾䫎珲
    ⢽չ؝٦ָٝⰅ׏
    ׋綸כו׸պ
    5/15

    View Slide

  6. ؼُ٦وٝ؝ٝؾُذ٦ءّٝה侄肪
    ! ؼُ٦وٝ؝ٝؾُذ٦ءّٝך侄肪פך崞欽⢽䱰挿
    o 侄䌌ח״׷ٖه٦ز瘝ך䱰挿׾
    ➂䊨濼腉ח״׷荈⹛䱰挿ח縧ֹ䳔ִ׋ְָ劢׌㔭ꨇ
    ☞ ➂䊨濼腉ך➿׻׶ח欰䖝ず㡦ד䱰挿湱✼鐰⣣
    ! 湱✼鐰⣣כ 欰䖝ず㡦ֶָ✼ְך㷕统׾⸔ֽさֲ⼿锃㷕统
    ך⤛鹌ח׮אזָ׷
    ➂䊨濼腉ך➿׻׶ח欰䖝ָ侄䌌׾佄䴂
    6/15

    View Slide

  7. 湱✼鐰⣣
    ! 欰䖝Ⰻ㆞ָ姻׃ֻ鐰⣣דֹ׷הכꣲ׵זְ
    ‛ ♧אך瘶周׾醱侧ך欰䖝ָ鐰⣣ծ
    鐰⣣罏ך腉⸂׾罋䣁׃姻׃ְ挿侧׾✮庠
    ?
    瘶周
    鐰⣣罏 挿侧
    㔐瘶罏
    湱✼鐰⣣穠卓ַ׵姻׃ְ挿侧׾✮庠
    Y. Baba and H. Kashima: Statistical quality estimation for general crowdsourcing tasks, In KDD,
    2013.



    ぐ鐰⣣罏ך䱰挿穠卓ַ׵
    鐰⣣罏ך腉⸂׾罋䣁׃ג挿侧׾✮庠
    7/15

    View Slide

  8. 湱✼鐰⣣ٌرٕ
    ! 㔐瘶罏ָ瘶周׾⡲׷麓玎٥鐰⣣罏ָ瘶周׾䱰挿ׅ׷麓玎׾
    ٌرٕ⻉ׅ׷ֿהד瘶周ך溪ך挿侧׾✮庠דֹ׷
    o 4UFQ㔐瘶罏ָ㉏겗ח㼎׃$%
    挿ך瘶周׾⡲䧭ׅ׷ծ
    挿侧$%
    כ 䎂㖱%
    , ⴓ侔%
    *ח䖞ֲ
    瘶周ך溪ך挿侧
    㔐瘶罏ך挿侧ךⴓ侔
    㔐瘶罏ך腉⸂
    瘶周
    㔐瘶罏
    qjk
    ⇠ N qjk
    | µk, 2
    k
    $%挿
    㔐瘶罏ָ瘶周׾⡲׷麓玎׾ٌرٕ⻉
    8/15

    View Slide

  9. ! 㔐瘶罏ָ瘶周׾⡲׷麓玎٥鐰⣣罏ָ瘶周׾䱰挿ׅ׷麓玎׾
    ٌرٕ⻉ׅ׷ֿהד瘶周ך溪ך挿侧׾✮庠דֹ׷
    o 4UFQ鐰⣣罏ָ瘶周ח㼎׃-$%
    挿׾➰♷ׅ׷ծ
    挿侧-$%
    כ䎂㖱$%
    + -
    , ⴓ侔-
    *ח䖞ֲ
    湱✼鐰⣣ٌرٕ
    鐰⣣罏ך挿侧ךⴓ侔
    瘶周ך溪ך挿侧 鐰⣣罏ךغ؎،أ
    瘶周
    鐰⣣罏
    -$%挿
    sijk
    ⇠ N sijk
    | qjk + ⌘i, 2
    i
    鐰⣣罏ָ瘶周׾䱰挿ׅ׷麓玎׾ٌرٕ⻉
    9/15

    View Slide

  10. ♧㼎嫰鯰ח״׷湱✼鐰⣣
    ! 瘶周ח挿侧׾➰ֽ׷ךָꨇ׃ְ㜥さ׮֮׷
    ‛ 瘶周ل،׾嫰鯰ׇׁծ
    嫰鯰穠卓ַ׵鐰⣣罏ך腉⸂׾罋䣁׃ג瘶周ך挿侧׾✮庠
    ?
    "ך挿侧
    㔐瘶罏
    T. Sunahase, Y. Baba and H. Kashima, Pairwise HITS: Quality estimation from pairwise
    comparisons in creator-evaluator crowdsourcing process, In AAAI, 2017
    瘶周" 瘶周#
    "
    "
    #
    #
    #
    "



    ?
    #ך挿侧
    ぐ鐰⣣罏ך♧㼎嫰鯰穠卓ַ׵
    鐰⣣罏ך腉⸂׾罋䣁׃ג挿侧׾✮庠
    ♧㼎嫰鯰穠卓ַ׵姻׃ְ挿侧׾✮庠
    10/15

    View Slide

  11. ♧㼎嫰鯰ٌرٕ
    ! 溪ך挿侧ה鐰⣣罏ך腉⸂׾❛✼ח刿倜
    o 4UFQ鐰⣣罏腉⸂-
    ׾㔿㹀׃溪ך挿侧$
    ׾刿倜
    o 4UFQ溪ך挿侧$
    ׾㔿㹀׃鐰⣣罏腉⸂-
    ׾刿倜
    qj qj0
    =
    X
    i2Vj j0
    ri
    X
    i2Vj0 j
    ri
    瘶周ח䫎牰׃׋
    ➂ך腉⸂ךㄤ
    ri =
    |{(j j0) 2 Vi
    | qj > qj0
    }|
    |Vi
    |
    鐰⣣罏ך
    姻׃ְ䫎牰
    ךⶴさ
    挿侧ה鐰⣣罏腉⸂׾❛✼ח刿倜׃挿侧׾✮庠
    11/15
    瘶周ה’ך溪
    ך挿侧ך䊴
    瘶周ˏח䫎牰׃
    ׋➂ך腉⸂ךㄤ
    溪ך挿侧ָ넝ְ倯ך
    瘶周פך鐰⣣罏ך
    䫎牰㔐侧
    鐰⣣罏ך
    䫎牰㔐侧

    View Slide

  12. 湱✼幐⵴
    ! ֶ✼ְח䱰挿ׅ׷׌ֽדכזֻ
    ֶ✼ְח幐⵴׮ׅ׷ֿהד瘶周פךؿ؍٦سغحؙ׾䲿⣘
    ! 䱰挿ה幐⵴ך♧顐䚍׾ⵃ欽׃ג幐⵴罏腉⸂׾䱿㹀ծ
    姻׃ְ挿侧ך✮庠ח崞欽
    o 䱰挿ה幐⵴ָ♧顐׃זְ⢽
    չ挿侧כ⡚ְךח幐⵴ָⰋ搫זְպ
    չ挿侧ָ넝ְךח幐⵴׾׋ֻׁ׿ׅ׷պ
    We observe that sometimes there is
    inconsistency between a grade and a
    correction; for example, a grader provides a
    high grade with a submission but she corrects
    many errors.
    We observed the occasional inconsistency
    between a grade and the correction; for
    example, a grader provides a high grade for a
    submission, but many errors were corrected.

    T. Sunahase, Y. Baba and H. Kashima, Statistical modeling of peer correction and peer
    assessment, submitted.
    䱰挿ה幐⵴ך♧顐䚍׾ⵃ欽׃ג鐰⣣罏腉⸂׾䱿㹀
    12/15

    View Slide

  13. 湱✼⡲㉏
    ! 侄䌌ך➿׻׶ח欰䖝ָذأزך㉏겗׾⡲䧭
    o ぐ欰䖝כ➭ך欰䖝ָ⡲׏׋㉏겗׾鍑ֻ
    ! 欰䖝ָ⡲׏׋㉏겗ח㼎ׅ׷㔐瘶ַ׵ぐ欰䖝ך统擾䏝׾✮庠
    o 葺ְ㉏겗׾⡲׷欰䖝׮ְ׸ל׉ֲׄׯזְ欰䖝׮ְ׷
    Ԃ欰䖝׀הך⡲㉏腉⸂׾罋䣁
    A. Taniguchi and S. Inoue, A method for automatic assessment of user-generated tests and its
    evaluation, In UbiComp/ISWC Adjunct, 2015.
    ،وبٝך،ؚٓ٘ٔ屎
    崧㚖ד饯ֿ׷˘
    "ؾٗٗحؕ
    #ػٗٗحؕ
    $هٗٗحؕ
    %لٗٗحؕ
    欰䖝ָ㉏겗׾⡲䧭
    ➭ך欰䖝ָ㔐瘶
    欰䖝ָ✼ְח㉏겗׾⳿׃さֲהֹך⡲㉏腉⸂׾䱿㹀
    13/15

    View Slide

  14. Ⱏずⶼ⡲
    L. Yu and J. V. Nickerson: Cooks or cobblers? crowd creativity through combination, In CHI, 2011.
    ⢽喱㶨ךرؠ؎ٝ
    4UFQ痥⚅➿ך⦐⡤׾ぐ荈ָ欰䧭
    4UFQ䫎牰ד⮚葺⦐⡤
    ׾鼅䫙׃如⚅➿ך⦐⡤
    ׾❛⿷ח״׶欰䧭
    4UFQ鼅䫙٥❛⿷׾粸׶鵤ׅ
    鼋⠗涸،ٕ؞ٔؤيח⦺ְⰟずⶼ⡲׾佄䴂
    ! ✼ְך涪䟝׾⤛׃׫׿זד⡲ㅷ׾峤箺ׇׁגְֻ
    14/15

    View Slide

  15. תה׭
    ➂䊨濼腉ך♧ⴓꅿד֮׷
    չؼُ٦وٝ؝ٝؾُذ٦ءّٝպ׾欽ְ
    欰䖝ֶָ✼ְך㷕统׾⸔ֽさֲչ⼿锃㷕统պ׾佄䴂
    湱✼鐰⣣
    湱✼⡲㉏
    湱✼幐⵴
    Ⱏずⶼ⡲
    鐰⣣罏腉⸂׾䱿㹀 幐⵴罏腉⸂׾䱿㹀
    ⡲㉏罏腉⸂׾䱿㹀 涪䟝׾佄䴂
    15/15

    View Slide