Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
意外と簡単!「この商品を買った人はこんな商品も買っています」を作ってみよう
Search
yuta ishizaka
September 08, 2016
Technology
3
770
意外と簡単!「この商品を買った人はこんな商品も買っています」を作ってみよう
勉強会資料です。
テストデータなどはイベント開催ページにて。
http://d-cube.connpass.com/event/39131/
yuta ishizaka
September 08, 2016
Tweet
Share
More Decks by yuta ishizaka
See All by yuta ishizaka
ProductZine webiner資料
yutaishizaka
0
65
s-dev talks #2 〜チームビルディング〜 LT資料
yutaishizaka
3
660
業務ハックのためのPFDのすゝめ
yutaishizaka
1
320
スタートアップ2人目エンジニアのリアル
yutaishizaka
2
480
product_kaizen_night
yutaishizaka
1
690
Other Decks in Technology
See All in Technology
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
530
20260208_第66回 コンピュータビジョン勉強会
keiichiito1978
0
200
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
200
今日から始めるAmazon Bedrock AgentCore
har1101
4
420
GitHub Copilot CLI を使いやすくしよう
tsubakimoto_s
0
110
Codex 5.3 と Opus 4.6 にコーポレートサイトを作らせてみた / Codex 5.3 vs Opus 4.6
ama_ch
0
220
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
240
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.4k
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
270
インフラエンジニア必見!Kubernetesを用いたクラウドネイティブ設計ポイント大全
daitak
1
390
OpenShiftでllm-dを動かそう!
jpishikawa
0
140
今こそ学びたいKubernetesネットワーク ~CNIが繋ぐNWとプラットフォームの「フラッと」な対話
logica0419
5
550
Featured
See All Featured
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
Game over? The fight for quality and originality in the time of robots
wayneb77
1
120
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
sira's awesome portfolio website redesign presentation
elsirapls
0
150
Code Review Best Practice
trishagee
74
20k
Principles of Awesome APIs and How to Build Them.
keavy
128
17k
Faster Mobile Websites
deanohume
310
31k
Bash Introduction
62gerente
615
210k
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
590
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
260
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
450
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
99
Transcript
株式会社ビズリーチ 1 意外と簡単! 「この商品を買った人はこんな商品も 買っています」を作ってみよう
Copyright © 2016 BizReach Inc. All Right Reserved. これ⾒見見たことありますか?
2
Copyright © 2016 BizReach Inc. All Right Reserved. これ⾒見見たことありますか?
3 Amazon
Copyright © 2016 BizReach Inc. All Right Reserved. これ⾒見見たことありますか?
4
Copyright © 2016 BizReach Inc. All Right Reserved. これ⾒見見たことありますか?
5 YouTube
Copyright © 2016 BizReach Inc. All Right Reserved. 6
これを作ります
Copyright © 2016 BizReach Inc. All Right Reserved. アジェンダ
• ⾃自⼰己紹介 • レコメンドとは – 代表的なレコメンド⼿手法 • 作ってみよう – 環境作り – 実際に作ってみる 7
Copyright © 2016 BizReach Inc. All Right Reserved. ⾃自⼰己紹介
名前: ⽯石坂優太 職歴: 2008/4-‐‑‒2015/5 パイオニア(PM、アーキテクト) 2015/5-‐‑‒now ビズリーチ(企業向けサービスのグロース) スキル: C++, Java, Python, Rails, iOSApp, etc... 8
Copyright © 2016 BizReach Inc. All Right Reserved. ⾃自⼰己紹介
9
Copyright © 2016 BizReach Inc. All Right Reserved. レコメンドとは
• レコメンド(recommend)とは? 10
Copyright © 2016 BizReach Inc. All Right Reserved. レコメンドとは
• レコメンド(recommend)とは? 11 おすすめする
Copyright © 2016 BizReach Inc. All Right Reserved. 有名なレコメンド
• Amazon – ある商品を買った⼈人に、おすすめ商品を表⽰示することで、更更なる購⼊入を誘う – テンション・リダクション効果を狙っている • YouTube – ある動画を観た⼈人に、おすすめ動画を表⽰示することで、更更に視聴を促す 12
Copyright © 2016 BizReach Inc. All Right Reserved. レコメンドの効果
• 趣味嗜好に合わせた選択肢を提⽰示するので、コンバージョン率率率が⾼高い – 特に協調フィルタリングは好みを考慮するので効果が⾼高い • 利利⽤用者が思いつかない選択肢を提⽰示できる – 検索索では、利利⽤用者が思いつく選択肢にしかたどり着けない 13
Copyright © 2016 BizReach Inc. All Right Reserved. 代表的なレコメンドの⼿手法
• コンテンツ(内容)ベース – テキスト情報や属性情報などの内容で近さを評価し、内容が近いものをオ ススメする • 協調フィルタリング – 購⼊入者同⼠士の好みの類似性で近さ評価し、好みが近い⼈人が好きな商品をレ コメンドする 14
Copyright © 2016 BizReach Inc. All Right Reserved. 代表的なレコメンドの⼿手法
• コンテンツ(内容)ベース – テキスト情報や属性情報などの内容で近さを評価し、内容が近いものをオ ススメする • 協調フィルタリング – 購⼊入者同⼠士の好みの類似性で近さ評価し、好みが近い⼈人が好きな商品をレ コメンドする → AmazonやYouTubeは基本的にこっち 15
Copyright © 2016 BizReach Inc. All Right Reserved. コンテンツベース
16 ・新宿に住んでいる ・好きな食べものジャンルにカレーを登録している 新宿の飲み屋グループ 新宿のカレー屋グループ 原宿のカレー屋グループ ↓お店の情報をあらかじめ分析してグルーピング
Copyright © 2016 BizReach Inc. All Right Reserved. コンテンツベース
17 ・新宿に住んでいる ・好きな食べものジャンルにカレーを登録している 新宿の飲み屋グループ 新宿のカレー屋グループ 原宿のカレー屋グループ
Copyright © 2016 BizReach Inc. All Right Reserved. コンテンツベース
18 ・新宿に住んでいる ・好きな食べものジャンルにカレーを登録している 新宿の飲み屋グループ 新宿のカレー屋グループ 原宿のカレー屋グループ 内容が近いのでオススメする
Copyright © 2016 BizReach Inc. All Right Reserved. レコメンドの⼿手法(協調フィルタリング)
19
Copyright © 2016 BizReach Inc. All Right Reserved. レコメンドの⼿手法(協調フィルタリング)
20 購入!
Copyright © 2016 BizReach Inc. All Right Reserved. レコメンドの⼿手法(協調フィルタリング)
21 同じものを買った!
Copyright © 2016 BizReach Inc. All Right Reserved. レコメンドの⼿手法(協調フィルタリング)
22 こっちは買ってない
Copyright © 2016 BizReach Inc. All Right Reserved. レコメンドの⼿手法(協調フィルタリング)
23 おすすめする
Copyright © 2016 BizReach Inc. All Right Reserved. 作ってみよう
• AmazonやYouTubeで使われている「協調フィルタリング」のレコメンド を作ります – 近さの評価の仕⽅方は⾊色々ありますが、⼀一番シンプルなやつをつくりま す • Pythonで作ります – Pythonはデータ分析系のライブラリが充実しているので、レコメンド や機械学習に向いている 24
Copyright © 2016 BizReach Inc. All Right Reserved. 開発環境を作る
• Windowsの場合 http://qiita.com/koara-‐‑‒local/items/8d48d0306c85c61aed97 ※⼿手順4で pip install pandas もやる 25
Copyright © 2016 BizReach Inc. All Right Reserved. 開発環境を作る
• Macの場合 1. pythonのバージョン確認 python -‐‑‒-‐‑‒version 2. jupyterのインストール sudo pip install jupyter 3. pandasのインストール sudo pip install pandas 4. jupyter起動 jupyter notebook 26
Copyright © 2016 BizReach Inc. All Right Reserved. 実際に作ってみる
• とあるECサイトのユーザーのAさんが買い物をした時に、オススメの商品を5件表⽰示 する 27 購入! おすすめ!
Copyright © 2016 BizReach Inc. All Right Reserved. 実際に作ってみる
1. 購⼊入履履歴データを読み込む testdata.csv を⽤用意しました。 2. 購⼊入履履歴データを各お客さんごとにまとめる 後の計算をわかりやすくするためにデータを整形します。 {“Aさん” : [“商品A”, “商品B”, “商品C”], “Bさん” : [“商品B”]・・・} のようなデータに整形します。 3. レコメンドしたい対象(Aさん)とその他の共起数をとる 共起数 = 購⼊入したものが⼀一致している数 4. 共起数が⾼高い順にオススメとして表⽰示する 購⼊入したものの⼀一致数が多いほど、好みが近いため、優先的に表⽰示しましょう。 28
Copyright © 2016 BizReach Inc. All Right Reserved. testdata.csv
29
Copyright © 2016 BizReach Inc. All Right Reserved. ⾏行行動データの読み込み
30 conversionsには、 [(‘Aさん’,’商品A’), (‘Aさん’, ‘商品B’), (‘Bさん’, ‘商品C’), (‘Bさん’, ‘商品G’)・・・] のようなデータが入ってきます。 これを {“Aさん” : [“商品A”,“商品B”], “Bさん” : [“商品B”,“商品C”]・・・} のようなデータに一度変換します。
Copyright © 2016 BizReach Inc. All Right Reserved. 共起
31 1個被ってる ので、共起1 2個被ってる ので、共起2
Copyright © 2016 BizReach Inc. All Right Reserved. レコメンドの⼿手法
• 協調フィルタリングの弱点 – 特定の商品が集中してレコメンドされやすい • 誰からも好みと思われなかった商品はレコメンドされない • Amazonのようなレコメンドでは、商品数が無制限なので、ひとつの商品が集中 してレコメンドされても問題にならない(みんな買える) • Pairsのような⼈人材マッチングだと問題になる(1000⼈人の⼥女女性に1⼈人のモテ男性を 薦めても、マッチング成⽴立立するのは1⼈人だけなので、効率率率が悪いし、成⽴立立しない マッチングを薦めるのは顧客体験を損ねる) – ⾏行行動をベースにするので、⾏行行動がなければレコメンドできない • つまり、新規のお客さんにはレコメンドできないので、⼯工夫が必要 → コールドスタート問題 と⾔言います 32
Copyright © 2016 BizReach Inc. All Right Reserved. 付録
• Pythonのデータ分析等でよく使うライブラリ – Numpy – scikit-‐‑‒learn 33