Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
金融サービスにおける高速な価値提供とAIの役割 #BetAIDay
Search
LayerX
PRO
August 01, 2025
Technology
3
1.2k
金融サービスにおける高速な価値提供とAIの役割 #BetAIDay
2025/8/1 にLayerXで開催されたAIカンファレンス「Bet AI Day」における登壇資料です。
登壇者:Fintech事業 VPoE 髙橋 健太郎
LayerX
PRO
August 01, 2025
Tweet
Share
More Decks by LayerX
See All by LayerX
AIエージェント開発に求められるPdMの仕事を考える
layerx
PRO
1
92
Bakuraku Engineering Team Deck
layerx
PRO
14
8.1k
エンジニア → 人事への「急」な転身で見えた、お互いの誤解と理解 #yapcjapan
layerx
PRO
9
6.7k
可観測性は開発環境から、開発環境にもオブザーバビリティ導入のススメ
layerx
PRO
5
3.4k
コンパウンド組織のCRE #cre_meetup
layerx
PRO
1
2k
AI時代の経営、Bet AI Vision #BetAIDay
layerx
PRO
6
3.7k
バクラクによるコーポレート業務の自動運転 #BetAIDay
layerx
PRO
1
1.7k
LLMをツールからプラットフォームへ〜Ai Workforceの戦略〜 #BetAIDay
layerx
PRO
1
2.8k
Bet "Bet AI" - Accelerating Our AI Journey #BetAIDay
layerx
PRO
5
2.8k
Other Decks in Technology
See All in Technology
子育てで想像してなかった「見えないダメージ」 / Unforeseen "hidden burdens" of raising children.
pauli
2
310
Bedrock AgentCore Memoryの新機能 (Episode) を試してみた / try Bedrock AgentCore Memory Episodic functionarity
hoshi7_n
2
1.3k
「もしもデータ基盤開発で『強くてニューゲーム』ができたなら今の僕はどんなデータ基盤を作っただろう」
aeonpeople
0
110
Amazon Connect アップデート! AIエージェントにMCPツールを設定してみた!
ysuzuki
0
120
20251218_AIを活用した開発生産性向上の全社的な取り組みの進め方について / How to proceed with company-wide initiatives to improve development productivity using AI
yayoi_dd
0
510
アプリにAIを正しく組み込むための アーキテクチャ── 国産LLMの現実と実践
kohju
0
150
今年のデータ・ML系アップデートと気になるアプデのご紹介
nayuts
1
630
通勤手当申請チェックエージェント開発のリアル
whisaiyo
3
320
コンテキスト情報を活用し個社最適化されたAI Agentを実現する4つのポイント
kworkdev
PRO
1
1.8k
AWS運用を効率化する!AWS Organizationsを軸にした一元管理の実践/nikkei-tech-talk-202512
nikkei_engineer_recruiting
0
150
MySQLとPostgreSQLのコレーション / Collation of MySQL and PostgreSQL
tmtms
1
1.1k
AWSに革命を起こすかもしれない新サービス・アップデートについてのお話
yama3133
0
440
Featured
See All Featured
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.5k
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
850
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Faster Mobile Websites
deanohume
310
31k
How to build a perfect <img>
jonoalderson
0
4.6k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
Embracing the Ebb and Flow
colly
88
4.9k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
My Coaching Mixtape
mlcsv
0
8
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
320
Transcript
Fintech事業 VPoE 髙橋 健太郎@takochuu TAKAHASHI, Kentaro ⾦融サービスにおける ⾼速な価値提供と AIの役割 7Bets
on AI — Session 3
Speaker Fintech事業 VPoE アプリケーションエンジニアとして数社で勤務後、DeNA でエンジニア‧プロジェクトマネージャーとして勤務。 2016年より株式会社エウレカにて、⽇本版Pairsの開発責 任者‧Global版Pairsの開発責任者‧Head of Backend‧Head of
QAを担当。 2022年にLayerXに参画し、三井物産との合弁事業にて、 個⼈向け投資サービス「ALTERNA(オルタナ)」の⽴ち 上げに従事。 2024年からはVPoEとしてFintech事業部全般のエンジニ アリング組織を管掌。 髙橋 健太郎 TAKAHASHI, Kentaro
Agenda • Fintech事業部について • ⾦融事業の⾃動化における「壁」 • 全社的な取り組みの変遷 • 開発組織の変化 •
業務へのAI適⽤ • おわりに
Fintech事業部について Chapter 1
技術組織としての分岐点 Fintech事業部について
技術組織としての分岐点 市場の変化、経営者の意思決定、組織のAI浸透と活⽤による事業推進スピード全てにおいて変化が訪れ ている。対応の有無で事業の⾏く末は⼤きく変わる。 加速する事業と経営 Speed is The New Moat in
AI Sales. by Perplexity's CBO 技術組織としての分岐点
技術組織としての分岐点 三井物産、LayerX、⼤⼿⾦融機関などからアセットマネジメント、⾦融、ソフトウェア開発のエキス パートが集まって設⽴されたジョイントベンチャー 三井物産デジタル‧アセットマネジメント(MDM)のバックグラウンド Fintech事業部について
技術組織としての分岐点 MDMのビジネス Fintech事業部について
技術組織としての分岐点 MDMのプロダクト Fintech事業部について
技術組織としての分岐点 MDMのプロダクトタイムライン Fintech事業部について
技術組織としての分岐点 MDMのビジネス Fintech事業部について 不動産 ファンド 取得 配当 出資 投資家 投資プラットフォームの運営
取得した不動産やファンドの管理
技術組織としての分岐点 MDMの独⾃性 Fintech事業部について
技術組織としての分岐点 過去の取扱商品 Fintech事業部について ※これらの商品は、三井物産株式会社の⼦会社である三井物産デジタル‧アセットマネジメント株式会社によって、組成‧販売されたものです。
⾦融事業の⾃動化における「壁」 Chapter 2
不動産‧ファンド‧証券‧アセットマネジメント‧プロダクトと複数の領域が存在 それぞれが専⾨分野であり、それぞれの領域のプロフェッショナルが協調して事業を推進 不動産‧ファンド‧アセットマネジメント‧証券‧プロダクトの領域 物件鑑定 収益予測 契約書の作成‧契約 信託との連携 ローンの調整 物件管理指図 期中開⽰
資⾦管理 ⾦融事業の⾃動化における「壁」 証券の管理 期中配当‧開⽰‧償還 監督指針‧FISCへの準拠 各種規則に則った監督 FATCA対応 投資家獲得 リテンション イベント出展 セミナー CSATスコア向上 問い合わせ受付 不動産取得 ファンド組成 ファンド‧アセットマネ ジメント 証券販売‧運⽤ システム構築 コンプライアンス オンライン マーケティング オフライン マーケティング カスタマーサポート
不動産‧ファンド‧アセットマネジメント‧証券‧プロダクトの複雑性 • 多岐に渡る業務領域が存在 • 領域特有の深い知識が必要 • 金融事業であるため、ミスが起きた時の深刻さが大きく、ライセンスを取得しなけ れば事業活動ができない • 改善活動を行うためには深いドメイン知識が必要
• すべての領域に人が長らく担当してきた業務が存在 ◦ 契約書の作成・校正 ◦ 広告物の審査 ⾦融事業の⾃動化における「壁」
事業における複雑性 ⾦融事業の⾃動化における「壁」 → 具体的に開発を⾏って何の改善が可能なのか⼀⾒理解が難しく、効率化を⾏ うためには深い業務への理解が必要 • 多岐に渡る事業領域が存在 • 領域特有の深い知識が必要 •
金融事業であるため、ミスが起きた時の深刻さが大きく、ライセンスを取得しなけ れば事業活動ができない • 改善活動を行うためには深いドメイン知識が必要 • すべての領域に人が長らく担当してきた業務が存在 ◦ 契約書の作成・校正 ◦ 広告物の審査
全社的な取り組みの変遷 Chapter 3
エンジニアを中⼼にCursor‧ChatGPT‧Geminiなどを試⽤ 2024年まで 全社的な取り組みの変遷
包括的予算枠を設⽴し、全社を挙げてAIの活⽤を重要KPIとして設定。 全社員がツール利⽤申請の権利を持ち、全社的にAI活⽤を推進し、積極的にツールの改廃を⾏う。 2025年から 全社的な取り組みの変遷
開発組織の変化 Chapter 4
Fintech事業部の開発⽂化 開発組織の変化
AIは価値提供を ⾼速化するツールの⼀つ 開発組織の変化
4つの変化 • プロダクトマネジメント • エンジニアリング • 品質保証 • データ抽出・分析 開発組織の変化
ドメインが深いため、法令の調査‧仕様レビューがコストが⾼い課題が存在 プロダクトマネジメント 開発組織の変化 2. 企画‧仕様の⽴案 • 景表法や法定書面の記載要項(法定要件)に準拠する必要がある ◦ 企画・仕様を作成する際のコストが高い •
一部の有識者が作成した仕様のレビューが一般的なエンジニア・PdMでは困難 ◦ 外部専門家へのレビューは行うが、リードタイム発生 1. 法令の調査 3. 外部専⾨家レビュー
DeepResearchをはじめとするツールの進化でこれまで有識者が対応していた「調査」が容易に プロダクトマネジメント 開発組織の変化
コーディングが効率化されたが、課題の顕在化の速度が向上 エンジニアリング 開発組織の変化 1. 仕様検討 2. コーディング 3. コードレビュー •
コーディングについてはDevin / Cursor / Claude Code等で効率化 ◦ 価値検証が高速化されたが、問題が顕在化する速さが早くなった ▪ 品質 ▪ コードレビューの数 ▪ 技術的負債 • ソフトウェアエンジニアリングの重要性が向上 • 正しい設計の重要性 3. コードレビュー
コードレビューの補助ツール導⼊ エンジニアリング 開発組織の変化 • コードレビューが滞留するためツールを2種導入 • 人間はよりデータ・設計を重視したレビュー体制へ変更
ドメインが深いため、ブラックボックステストの影響範囲漏れ‧要件の確認漏れが発⽣していた 品質保証 開発組織の変化 1. テスト設計 2. ケース作成 3. コードレビュー •
要件の精査にドメイン知識が必要なため、ブラックボックステストでは要件漏れが 発生し、品質担保が困難 • テストケースの作成がすべて人間任せ ◦ テストケースのレビュー漏れ・観点漏れがあると障害につながる • テスト観点出しも仕様書に依存しているため、上流のアウトプットに品質が依存 3. テスト実施 2. ケース作成
Devin + cursorでの影響範囲調査、テストケース作成を効率化 品質保証 開発組織の変化
⾃然⾔語でのデータ分析 データ抽出‧分析 開発組織の変化 • Codexなどのソースコードを読み込んでいる ツールを利用した、自然言語での分析依頼 の自動化 • 非エンジニア向けにE-R図などの準備は必 要だがスキーマさえ理解できれば抽出依頼
を減らせるように
職種の役割が再定義され、より上流の「何を作るか‧どう売るか」の重要性が上がる プロダクト職種の役割を問い直す 開発組織の変化 1. 企画 2. 開発 3. QA 1.
企画 • 開発・品質保証の効率化が進み、より上流の「何を作るか・どう売るか」が大事な 時代が来る • 作られたプロダクトの確認作業・品質保証・承認の量も増加する ◦ この部分の効率化も課題になる ◦ いずれ、品質保証領域などはツールにより効率化される未来を予想
AIの浸透により 上流⼯程の質が⼤事な時代に 開発組織の変化
業務へのAI適⽤ Chapter 5
⽣成AIを活⽤した業務効率化のための社内プロダクト開発 ファンド組成 業務へのAI適⽤
⽣成AIを活⽤した業務効率化のための社内プロダクト開発 ファンド組成 業務へのAI適⽤ 1. 企画 2. 広告審査 3. カスタマーサポート 1.
ファンド組成 • 1つのファンドを作るのに約10種類の主要契約書 (それぞれが数十ページ) を作 成する必要があり、それぞれの整合性を保ちながら修正する人力作業を生成AI により支援。社内向けにWord Add-inの形で提供。 • ALTERNAの販売促進に利用する広告の審査業務のアシスタントAIを作成中。 広告表現がレギュレーションに接触しないかをAIで判定。 2. 広告審査
Wordアドインで契約書レビューの効率化を実施中。 ファイル間での表現における差分を抽出し、修正提案を⽣成している ファンド組成の効率化 業務へのAI適⽤
⾦融における広告基準を満たしているかをURLベースで判定 広告審査の効率化 業務へのAI適⽤ • 対象ページのURLを指定し、広告審 査ガイドラインに抵触しているかを検 定 • NGの場合は明示的にNG部分を抽 出し、指摘する
• Playwritght MCPで文書を抜き出して 対応
アセットマネジメントチームでの投資判断‧物件分析にChat GPTを活⽤ AM領域の効率化 業務へのAI適⽤
投資家からの問い合せ対応効率化 カスタマーサポート領域の効率化 業務へのAI適⽤ • AIが問合せへの回答文案を自動生成し、金融特有の複雑 な問合せ対応の処理時間を 25 % 削減 •
AI が目論見書・FAQ・社内ナレッジを横断検索し、問合せ 回答ドラフトを数秒で作成 • 結果、関連問合せにおける、オペレーターの回答文作成 リードタイムを 25 % 短縮 • ※社内トーン&法令ガイドも参照し AI が自己レビュー → 商品組成チームが最終確認して 品質を担保
AIの活⽤推進は アイデアの量が重要 開発組織の変化
おわりに Chapter 6
⾼速な価値提供のためにAI時代に重要なこと おわりに 活⽤領域を増やすためツールを利⽤しやすい環境を準備 AI技術の浸透でプロダクト開発は上流が重要になる AIツール活⽤はアイデアの量(発想量)が⼤事