Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2024年における生成AIエンジニアとは何者か
Search
yudai yamamoto
August 08, 2024
Technology
11
4.1k
2024年における生成AIエンジニアとは何者か
yudai yamamoto
August 08, 2024
Tweet
Share
More Decks by yudai yamamoto
See All by yudai yamamoto
AIコーディングネイティブ世代のバイブコーディングに対する雑感
yyo616
0
590
安全性を高めるAzure AI Content Safety について
yyo616
1
410
コンテンツモデレーション入門の入門
yyo616
2
170
大規模言語データの前処理とLLM-as-a-Judge の活用
yyo616
4
1.8k
Docusaurus を使った開発ドキュメントの作成と運用
yyo616
0
560
Playwrightでテストを楽に実装したい
yyo616
0
86
Other Decks in Technology
See All in Technology
TypeScript×CASLでつくるSaaSの認可 / Authz with CASL
saka2jp
2
160
All About Sansan – for New Global Engineers
sansan33
PRO
1
1.3k
Eight Engineering Unit 紹介資料
sansan33
PRO
0
5.6k
なぜフロントエンド技術を追うのか?なぜカンファレンスに参加するのか?
sakito
3
600
SRE視点で振り返るメルカリのアーキテクチャ変遷と普遍的な考え
foostan
2
3.1k
GitHub を組織的に使いこなすために ソニーが実践した全社展開のプラクティス
sony
17
8.8k
進化の早すぎる生成 AI と向き合う
satohjohn
0
350
組織の“見えない壁”を越えよ!エンタープライズシフトに必須な3つのPMの「在り方」変革 #pmconf2025
masakazu178
1
1.1k
その意思決定、まだ続けるんですか? ~痛みを超えて未来を作る、AI時代の撤退とピボットの技術~
applism118
45
25k
re:Invent2025とAWS Builder Cards Resilience Expansionのご紹介
tsuwa61
1
100
翻訳・対話・越境で強いチームワークを作ろう! / Building Strong Teamwork through Interpretation, Dialogue, and Border-Crossing
ar_tama
1
570
.NET 10のEntity Framework Coreの新機能
htkym
0
140
Featured
See All Featured
Balancing Empowerment & Direction
lara
5
770
The Cost Of JavaScript in 2023
addyosmani
55
9.3k
How to train your dragon (web standard)
notwaldorf
97
6.4k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
11
950
Practical Orchestrator
shlominoach
190
11k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
The World Runs on Bad Software
bkeepers
PRO
72
12k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
We Have a Design System, Now What?
morganepeng
54
7.9k
Building an army of robots
kneath
306
46k
Transcript
2024年における ⽣成AIエンジニアとは何者か Generative AI/LLM Engineer Career Meetup #1 Yudai Yamamoto
(@yyo616)
👦 ⾃⼰紹介 ⼭本 雄⼤ (@yyo616) ⽣成AIエンジニア • NTT Communications •
LLMに関する研究開発、新規プロダクト開発 • フロントエンド → ⽣成AI のキャリアチェンジ • 最近は刃⽛にハマっている @yyo616
🙇 おことわり • 最近⽣成AIの業界に参⼊した素⼈の意⾒ • 客観性弱め、主観性強め、⽂字多め • ⽣成AIエンジニア = LLMエンジニア
= AI Engineer として話します • あくまで参考程度に
❓⽣成AIエンジニアとは何者か
• 国産⽇本語LLMが⾬後の筍のように誕⽣ • 業界・会社の規模問わずに⽣成AI活⽤が加速 • 社内ドキュメント検索から⽣成AIをコアに据えたプロダクト開発のフェーズへ突⼊ 📈 最近の⽣成AI活⽤の状況 https://layerx.co.jp/news/20240610/ https://www.nikkei.com/article/DGXZQOTG13CRV0T10C24A5000000/
https://group.ntt/jp/magazine/blog/tsuzumi20240325/ https://exawizards.com/archives/27549/
🐣 ⽣成AIエンジニアという職種の出現 • ⽣成AIの社会実装に向けた専属⼈材、専属チームを各社が配置 • LLMエンジニア、⽣成AIエンジニアという職種が出現 • エンジニア界隈での注⽬度も上がってきている
• 前提 : 業界的に⽣成AIエンジニアの役割についてコンセンサスは取れていない • The Rise of the AI
Engineer (Shawn Wang, 2023) を参考にすると「AIをうまく 評価、適⽤、製品化するための専⾨のエンジニア」と役割を定義できそう • ⽣成AIの製品化で特に課題となる、モデルの評価、外部ツール (chains, search tool, agents) とのオーケストレーション、最新研究の調査が典型的な業務内容 🧑💻 ⽣成AIエンジニアの役割 https://www.latent.space/p/ai-engineer
🧐 従来的なMLエンジニアリングとの差分 • モデル構築ではなくモデル適応技術に重点を置く • プロンプトエンジニアリングやFine Tuning など適応技術の⽅に⽐重が移った • 従来的なMLエンジニアリングには含まれない専⾨性が必要
• AI開発のフローが変化 • 基盤モデルやAPI、周辺ツールを組み合わせた価値検証を最初に⾏う • 相対的にアプリケーション側の開発の重要性が増加 • モデル評価の重要性が増加 • モデル評価の難易度と複雑性が増加する⼀⽅でその重要性はより増加 https://www.latent.space/p/ai-engineer
*求⼈サイトで記載されていた各社(21社)のLLMエンジニアの必須スキル項⽬(テクニカルスキルに限定)をカテゴリ分けして独⾃に集計 • ソフトウェアエンジニアのスキル + ⾃然⾔語処理・機械学習に関する知識 • Web開発の経験、コンピュータサイエンスの基本知識は must-have • 前職でWebエンジニアやSEだった⼈の割合は⾼め
• 特にバックエンドやソフトウェアアーキテクチャに関する知⾒があると強い • ⾃然⾔語処理・機械学習に関する知識や経験も⼀定レベル必要 • ゼロつく①② 辺りの内容は理解しているレベル • must-have ではなく nice-to-have の求⼈も実は存在する 🧐 ⽣成AIエンジニアのテクニカルスキルの要件 16 15 11 3 1 0 2 4 6 8 10 12 14 16 18 機 械 学 習 の 関 連 経 験 W eb開 発 経 験 プ ロ グ ラ ミ ン グ ⾔ 語 ス キ ル ク ラ ウ ド サ ー ビ ス 経 験 そ の 他 *求⼈における必須スキル項⽬の集計結果
• 常にアンテナを張り続けキャッチアップしていく姿勢 • 素早く情報に反応して試⾏錯誤する姿勢が重要 • 技術だけでなくビジネス価値に向き合う必要性 • 各社が社内検索をRAGで実装して、次に何に取り組むかを模索中 • AIで何を解決するのか、AIならではの体験とは何か
• ⼀般的なエンジニアよりも顧客視点、ビジネス視点を求められる ❤ ⽣成AIエンジニアに必要なマインドセット https://layerx.connpass.com/event/324728 https://www.meti.go.jp/shingikai/mono_info_service/digital_jinzai/pdf/016_03_00.pdf
• 評価パイプラインの構築・運⽤のスキル • 数ある基盤モデルからユースケースに最適なモデルを効率的に選定する必要 がある • 独⾃データセットの作成・評価を必要とするケースが増加 • プロンプトやRAGなどのLLM特有の要素に対応する必要がある •
従来的なMLエンジニアリングのスキル • LLMと従来的な機械学習モデルを適材適所で使うハイブリッドなアプローチが 現時点では⼀番有望に⾒える • 「AIで作る or AI で作らない」「LLMを使う or LLMを使わない」 の審美眼 と⼿札をいかに備えることができるか • nice-to-have として挙げた従来的なMLエンジニアリングの専⾨性が⽣成AI エンジニアにとっての⼤きな差別化要因になる 🧐 今後重要となるスキルの予想(妄想)
📣 宣伝
担当できるスコープ • 実は NTTコミュニケーションズも結構⽣成AIに取り組んでいます • 新規プロダクト開発、研究開発、⽣成AIに関する技術⽀援 • フロントエンド〜インフラ • RAG、ファインチューニング、継続事前学習、評価、データセット作成など
• もしも興味ある⽅いればお話ししましょう︕ https://www.latent.space/p/ai-engineer
🙇 ご清聴ありがとうございました