Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
大規模言語データの前処理とLLM-as-a-Judge の活用
Search
yudai yamamoto
July 11, 2024
Technology
4
1.8k
大規模言語データの前処理と LLM-as-a-Judge の活用
yudai yamamoto
July 11, 2024
Tweet
Share
More Decks by yudai yamamoto
See All by yudai yamamoto
AIコーディングネイティブ世代のバイブコーディングに対する雑感
yyo616
0
570
安全性を高めるAzure AI Content Safety について
yyo616
1
400
コンテンツモデレーション入門の入門
yyo616
2
170
2024年における生成AIエンジニアとは何者か
yyo616
11
4.1k
Docusaurus を使った開発ドキュメントの作成と運用
yyo616
0
550
Playwrightでテストを楽に実装したい
yyo616
0
83
Other Decks in Technology
See All in Technology
Amazon Athena で JSON・Parquet・Iceberg のデータを検索し、性能を比較してみた
shigeruoda
1
300
Spec Driven Development入門/spec_driven_development_for_learners
hanhan1978
1
640
組織全員で向き合うAI Readyなデータ利活用
gappy50
5
2.1k
激動の時代を爆速リチーミングで乗り越えろ
sansantech
PRO
1
260
今から間に合う re:Invent 準備グッズと現地の地図、その他ラスベガスを周る際の Tips/reinvent-preparation-guide
emiki
1
280
AI時代に必要なデータプラットフォームの要件とは by @Kazaneya_PR / 20251107
kazaneya
PRO
4
650
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
260
Playwrightで始めるUI自動テスト入門
devops_vtj
0
140
なぜ新機能リリース翌日にモニタリング可能なのか? 〜リードタイム短縮とリソース問題を「自走」で改善した話〜 / data_summit_findy_Session_2
sansan_randd
1
120
NOT A HOTEL SOFTWARE DECK (2025/11/06)
notahotel
0
3k
20251106 Offers DeepDive 知識を民主化!あらゆる業務のスピードと品質を 改善するためのドキュメント自動更新・活用術
masashiyokota
0
160
AIエージェントによる業務効率化への飽くなき挑戦-AWS上の実開発事例から学んだ効果、現実そしてギャップ-
nasuvitz
5
1.6k
Featured
See All Featured
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Designing for humans not robots
tammielis
254
26k
What's in a price? How to price your products and services
michaelherold
246
12k
RailsConf 2023
tenderlove
30
1.3k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
How GitHub (no longer) Works
holman
315
140k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
For a Future-Friendly Web
brad_frost
180
10k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
Done Done
chrislema
186
16k
Transcript
⼤規模⾔語データの前処理と LLM-as-a-Judge の活⽤ 2024/07/11 ChatGPT Meetup Tokyo #8 Yudai Yamamoto
(@yyo616)
👦 ⾃⼰紹介 ⼭本 雄⼤ (@yyo616) AIエンジニア - NTT Communications -
Moderation 周りの研究開発とプロダクト開発 - 4⽉まで Cybozu でフロントエンドエンジニア - 最近は刃⽛にハマり中 @yyo616
少し前まで GENIAC 松尾研 LLM開発プロジェクトに参加 今⽇はその際に取り組んだ内容をもとに話します💪
🧐 松尾研 LLM開発プロジェクト とは GENIAC 松尾研 LLM開発プロジェクト
🧭 LLMの開発⼯程 1 データセットの整備 ⼤量のテキストデータを収 集し、品質の⾼いデータを 得るための前処理を⾏う 2 モデルの構築・学習 3
指⽰チューニング 様々なタスクのデータを指⽰ と回答のようなつながった⽂ 章として⾔語モデルに与え追 加学習させることで、⾔語モ デルの対話性能を向上させる ⼤量のテキストデータを利⽤ し、学習を⾏うことで⾔語理 解能⼒を獲得させる
🧭 データセットの整備チームに所属 • それぞれの⼯程ごとにサブチームに分かれることになった • ⾃分はデータセットの整備チームに所属 • チームの活動内容としてはデータの選定、ライセンス調査、前処理など 1 データセットの整備
⼤量のテキストデータを収 集し、品質の⾼いデータを 得るための前処理を⾏う 2 モデルの構築・学習 ⼤量のテキストデータを利⽤ し、学習を⾏うことで⾔語理 解能⼒を獲得させる 3 指⽰チューニング 様々なタスクのデータを指⽰ と回答のようなつながった⽂ 章として⾔語モデルに与え追 加学習させることで、⾔語モ デルの対話性能を向上させる 担当
💪Try, Cleaning その頃は⽬の前に⽴ちはだかる⾼い壁を知るよしもなかった...
😩 ⼤規模⾔語コーパスは汚い • 事前学習では Common Crawl や C4 のようなデータセットを⽤いることが多い •
ある程度の前処理は⾏われているデータセットもあるが実際は結構汚い • データの品質はモデル性能に関わるので磨き上げたい Textbooks Are All You Need The RefinedWeb Dataset for Falcon LLM: Outperforming Curated Corpora with Web Data, and Web Data
🧹 定番の前処理を実施 • まず論⽂やブログによく書いてあるようなルールベースの前処理を実施 • テキスト正規化、テキストチャンキング、重複削除など • 性的・差別的・暴⼒的などの有害カテゴリのコンテンツ除去 • 個⼈情報のマスキング
A Survey of Large Language Models
💻 実装には HojiChar を利⽤ • 前処理コードの実装には主に HojiChar を利⽤ • Common
Crawl のようなデータに対しての前処理⽤ライブラリ • 処理操作のシーケンスを宣⾔的に記⼊できる • ⽇本語にも対応
📊 結果 • 前処理したデータの質がイマイチに⾒えた • 多様なデータに対してルールベースの 前処理は厳しい 登録されている NGワードが⽂章中に⼀定以上の割合で 含まれる場合に排除する
→ 逆にNGワードリストに含まれない単語には対応できない 有害コンテンツを排除するためのモジュール例
🧐 機械学習ベースのフィルタリングを試みる
🧭 機械学習ベースのフィルタリング • どのような⼿段でフィルタリングするか • 分類器による分類 • フィルタリング⽤のAPIの利⽤ • Perplexity
を利⽤した判定 → LLM as a judge「Ask LLM」という⼿法を採⽤
🧠 Ask LLM とは • 事前学習データを代理LLMを利⽤し品質フィルタリング • 事前学習データセットC4に対して、サンプリング20%でも下流タスクの性能を 33%向上 •
Flan-T5-XL(3B)という⽐較的⼩さな代理LLMでも有効 How to Train Data-Efficient LLMs
🧠 Ask LLM とは Ask-LLM論⽂紹介: How to Train Data-Efficient LLMs
🧭 Ask LLM の採⽤理由 • 品質フィルタリングとして他⼿法に⽐べて優秀 • いくつかの予備実験で⽇本語データにおける有効性が確認できた • フィルタリングに要する時間が現実的な範囲に収まった
• 他チームとの差別化 • メンバー(@susumuota)の尽⼒ Ask-LLM論⽂紹介: How to Train Data-Efficient LLMs
📊 品質フィルタリングの結果とPJの感想 • 結果としては定性的にはうまくいっていそう • 時間とコストの都合上、定量的に測ることはできなかった • 今後もデータエンジニアリングにLLMを利⽤する事例は増えていく • 広告系のテキストを低品質データとみなすかどうか
• 広告系のテキストは全データのうち、結構な割合を占める • 有害とまでは⾔い切れないが、⽣成能⼒に悪影響を与える可能性は考えられそう • 結局LLMにとっての良いデータセットの基準がよくわからない • 現状は良さそうなデータを⼈間基準で選んでいる状況 • 多くの場合、選定に明確な根拠があるわけではない • しかも前処理の効能を学習結果から測るのはLLMの学習コストの点から⼤変
ご清聴ありがとうございました 🙇