$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Go as an aggregator in recommendation systems
Search
Agata Naomichi
July 26, 2018
Programming
2
1.4k
Go as an aggregator in recommendation systems
Agata Naomichi
July 26, 2018
Tweet
Share
More Decks by Agata Naomichi
See All by Agata Naomichi
Why Kotlin? 電子カルテを Kotlin で開発する理由 / Why Kotlin? at Henry
agatan
2
7.7k
全員アーキテクトで挑む、 巨大で高密度なドメインの紐解き方
agatan
8
21k
チームで開発し事業を加速するための"良い"設計の考え方 @ サポーターズCoLab 2025-07-08
agatan
2
630
医療系スタートアップが経験した 認知負荷問題の症状分析と処方箋 チーム分割による認知負荷の軽減 / Cognitive Load Busters
agatan
2
570
専門性の高い領域をいかに開発し、 テストするか / How to test and develop complicated systems with Domain Experts!
agatan
3
860
Henry のサーバーサイドアーキテクチャ 狙いと課題 2022.08.25 / Server-Side Architecture at Henry, Inc.
agatan
3
5.7k
The Web Conference 2020 - Participation Report
agatan
1
720
○○2vec 再考
agatan
1
4.6k
Improving "People You May Know" on Directed Social Graph
agatan
4
2.7k
Other Decks in Programming
See All in Programming
Context is King? 〜Verifiability時代とコンテキスト設計 / Beyond "Context is King"
rkaga
10
1.4k
AIエンジニアリングのご紹介 / Introduction to AI Engineering
rkaga
8
3.3k
令和最新版Android Studioで化石デバイス向けアプリを作る
arkw
0
440
tsgolintはいかにしてtypescript-goの非公開APIを呼び出しているのか
syumai
7
2.3k
Cell-Based Architecture
larchanjo
0
140
AIコーディングエージェント(NotebookLM)
kondai24
0
220
AI前提で考えるiOSアプリのモダナイズ設計
yuukiw00w
0
180
モデル駆動設計をやってみようワークショップ開催報告(Modeling Forum2025) / model driven design workshop report
haru860
0
280
開発に寄りそう自動テストの実現
goyoki
2
1.4k
LLMで複雑な検索条件アセットから脱却する!! 生成的検索インタフェースの設計論
po3rin
4
960
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
160
生成AI時代を勝ち抜くエンジニア組織マネジメント
coconala_engineer
0
610
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
GraphQLとの向き合い方2022年版
quramy
50
14k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5k
Mobile First: as difficult as doing things right
swwweet
225
10k
We Are The Robots
honzajavorek
0
120
Balancing Empowerment & Direction
lara
5
820
Facilitating Awesome Meetings
lara
57
6.7k
Everyday Curiosity
cassininazir
0
110
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.4k
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
93
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Transcript
©2018 Wantedly, Inc. Go as an aggregator In Recommendation Systems
26.Jul.2018 - Naomichi Agata
©2018 Wantedly, Inc. agatan Software engineer at Wantedly, inc. Server
side + Machine learning Github Twitter @agatan @agatan_
©2018 Wantedly, Inc. Everything is a Recommendation https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
©2018 Wantedly, Inc. Recommendations ΄ͱΜͲͷαʔϏεͰʮԿ͔Λਪન͢Δʯͱ͍͏ػೳ͋Δ
©2018 Wantedly, Inc. Impact of Recommendations ⾣Linkedinͷͭͳ͕Γͷ50%Ҏ্ʮΓ߹͍Ͱ͔͢ʁʯܦ༝ ⾣ https://engineering.linkedin.com/teams/data/projects/pymk ⾣NetflixਪનγεςϜͷcompetition
Λ։࠵ۚ͠$1 Million Λग़͍ͯ͠Δ ⾣ https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
©2018 Wantedly, Inc. Components of Recommendations ਪનͷࠜڌ͍ΖΜͳॴʹ͋Δ ⾣ʮ˓˓͞Μ͕-JLF͠·ͨ͠ʯ ⾣ʮ͜ͷΛߪೖͨ͠ਓ͜ͷങ͍ͬͯ·͢ʯ ⾣ʮڞ௨ͷͭͳ͕Γ͕ਓ͍·͢ʯ
⾣ʮͷχϡʔεʯ ⾣ʮ˓˓Λݕࡧͨ͠ํʯ ⾣ʮಉ͡ձࣾͰಇ͍͍ͯΔϢʔβʯ
©2018 Wantedly, Inc. Order of Recommendations ΑΓྑ͍ΞΠςϜΛɺΑΓྑ͍ॱংͰఏࣔ͢Δ͜ͱ͕ٻΊΒΕΔ ⾣Hot Topics ͳΔ͘͘ఏ͍ࣔͨ͠
⾣֬ݻͨΔࣗ৴ͷ͋ΔਪનΛ༏ઌͯ͠ݟ͍ͤͨ ⾣શମͰͷਓؾॱΑΓύʔιφϥΠζͨ͠ॱংΛఏڙ͍ͨ͠ ⾣αʔϏεݻ༗ͷׂΓࠐΈ͋Δ͔͠Εͳ͍ by Google
©2018 Wantedly, Inc. Recommendations with strategies
©2018 Wantedly, Inc. aggregator Strategy Strategy Strategy Strategy ༑ୡ͕-JLFͨ͠ΞΠςϜΛఏࣔ ߪೖཤྺ͔Βͷ͓͢͢Ί
ͷΞΠςϜ ϓϩϑΟʔϧ͔Βͷ͓͢͢Ί Recommendations with strategies Strategy Λ࣮ߦ ݁ՌΛू re-ordering ฒߦॲཧ
©2018 Wantedly, Inc. Recommendations with strategies ֤strategy͕ਪનΞΠςϜΛఏࣔ UZQF4USBUFHZJOUFSGBDF\ /BNF 4USBUFHZ/BNF
4VHHFTU DUYDPOUFYU$POUFYU VTFS*%JOU TJ[FJOU <> 4VHHFTU6TFS FSSPS ^ UZQF4VHHFTU6TFSTUSVDU\ 6TFS*%JOU 4DPSFqPBU 4USBUFHZ/BNF4USBUFHZ/BNF 3FBTPOJOUFSGBDF\^GPSMPHHJOH ^
©2018 Wantedly, Inc. Recommendations with strategies ͦΕΒΛฒߦʹ࣮ߦ͠ू ࠷ऴతͳॱংΛܾఆ͢Δ GPS@ TSBOHFTUSBUFHJFT\
XH"EE HPGVOD T4USBUFHZ \ EFGFSXH%POF TT FSST4VHHFTU DUY VTFS*% TJ[F JGFSSOJM\ SFQPSUFSSPS SFUVSO ^ NV-PDL TVHHFTUJPOTBQQFOE TVHHFTUJPOT TT NV6OMPDL ^ T ^
©2018 Wantedly, Inc. Why Go? Machine Learning ͱ Microservices ͳߏ
ˠ֤Strategy API CallΛؚΈ͏Δ ˠฒߦॲཧʹڧ͍͜ͱ͕׆͖Δ aggregator microservices
©2018 Wantedly, Inc. Responsibility of Aggregator ⾣Logging ⾣ ͲͷStrategy ͕Ͳͷ͘Β͍ՌΛ͍͋͛ͯΔ͔
⾣֤Strategy ͷείΞͷॏΈ͚ʹΑΔϥϯΩϯά ⾣e.g. ͢Ͱʹఏࣔͨ͜͠ͱͷ͋ΔΞΠςϜͷείΞΛݮਰͤ͞Δ ⾣A/B Testing
©2018 Wantedly, Inc. Problems… ⾣Frror reporting ⾣ ͋Δstrategy ͕ࢮΜͰ͍ͯશମࢭ·Βͳ͍Ͱ΄͍͠ ⾣ࢮΜͩ͜ͱʹؾ͖͍ͨ
⾣Frror reporting service Λ׆༻ ⾣ෳͷStrategy Ͱಉ͡API CallΛͨ͘͠ͳΔ ⾣e.g. Profile Service ʹॴଐΛ͍߹ΘͤΔ࠷ۙങͬͨͷΧςΰϦ͕Γ͍ͨ ⾣HPMBOHPSHYTZODTJOHMFqJHIU ΠϯϝϞϦΩϟογϡͰແཧཧଋͶΔ ⾣Ͳ͜·Ͱaggregator ͕ܭࢉ͢Δ͖͔
©2018 Wantedly, Inc. Conclusion ⾣ਪનγεςϜ͍ΖΜͳཁૉͷΈ߹Θͤ ⾣Microservices / Machine Learning ⾣A/B
Test ͕ॏཁ ⾣࣮ࡍʹԿΛݟ͔ͤͨɺԿ͕Action ʹͭͳ͕͔ͬͨLogging ͍ͨ͠ ⾣લஈʹGo Λ͓͘ͱศར ⾣Concurrent ʹ͍ΖΜͳStrategy Λ࣮ߦ͢Δͷ͕؆୯