Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【論文紹介】Attention-GAN
Search
nodaki
July 14, 2018
Research
0
820
【論文紹介】Attention-GAN
Attenotion-GAN for Object Transfiguration in Wild Images
https://arxiv.org/abs/1803.06798
nodaki
July 14, 2018
Tweet
Share
More Decks by nodaki
See All by nodaki
【論文紹介】Bayesian Conditional GAN (BC-GAN)
akihiro_noda
1
810
Other Decks in Research
See All in Research
Practical The One Person Framework
asonas
1
2k
精度を無視しない推薦多様化の評価指標
kuri8ive
1
350
Tietovuoto Social Design Agency (SDA) -trollitehtaasta
hponka
0
3.6k
2024/10/30 産総研AIセミナー発表資料
keisuke198619
1
420
言語と数理の交差点:テキストの埋め込みと構造のモデル化 (IBIS 2024 チュートリアル)
yukiar
5
1k
情報処理学会関西支部2024年度定期講演会「自然言語処理と大規模言語モデルの基礎」
ksudoh
10
2.4k
Geospecific View Generation - Geometry-Context Aware High-resolution Ground View Inference from Satellite Views
satai
2
160
研究を支える拡張性の高い ワークフローツールの提案 / Proposal of highly expandable workflow tools to support research
linyows
0
280
NeurIPS 2024 参加報告 & 論文紹介 (SACPO, Ctrl-G)
reisato12345
0
280
Elix, CBI2024, スポンサードセッション, Molecular Glue研究の展望:近年の進展とAI活用の可能性
elix
0
130
Human-Informed Machine Learning Models and Interactions
hiromu1996
2
560
打率7割を実現する、プロダクトディスカバリーの7つの極意(pmconf2024)
geshi0820
0
260
Featured
See All Featured
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Building Applications with DynamoDB
mza
93
6.2k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
A Tale of Four Properties
chriscoyier
158
23k
Optimizing for Happiness
mojombo
376
70k
Navigating Team Friction
lara
183
15k
Building Flexible Design Systems
yeseniaperezcruz
328
38k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
193
16k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Building Your Own Lightsaber
phodgson
104
6.2k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
20
2.4k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
30
2.1k
Transcript
ATTENTION-GAN FOR OBJECT TRANSFIGURATION IN WILD IMAGES ʲจհʳ
֓ཁ Attention-Gan For Object Transfiguration In Wild Images ▸ ॻࢽใ
https://arxiv.org/abs/1803.06798 Submitted : 19 Mar 2018 ▸ ֓ཁ ը૾υϝΠϯؒͷࣸ૾ʢมʣΛֶश͢ΔωοτϫʔΫ AttentionػߏΛऔΓೖΕΔ͜ͱʹΑ͖ͬͯ͢ྖҬ͚ͩࣸ૾͢Δ͜ͱ͕Ͱ͖ɺ ΑΓ៉ྷͳը૾Λੜ͢Δ͜ͱʹޭ
Ϟσϧ Attention-GAN ྖҬΛΓग़͢Attention Network + มΛ୲͏Transformation Network
Ϟσϧ Attention GAN = Cycle GAN + Attention Mechanism ▸
Cycle consistency loss ▸ Attention loss X →Y →X Y→X →Y Attention cycle-consistent loss Attention sparse loss ྖҬ͕ՄೳͳݶΓখ͞ͳʢεύʔεͳʣྖҬʹͳΔΑ͏ʹL1ϊϧϜΛՃ
Ϟσϧ Supervised Learning ▸ Attention ≒ Segmentation Segmentation label͕͋ΔͷͳΒAttention network
segmentationΛղ͘Α͏ʹֶशͤ͞Εྑ͍ Attention supervised loss Total loss λcycle consistent loss ͱ attention loss ͷॏཁΛίϯτϩʔϧ͢Δ
ֶश Experiments ▸ Datasets ImageNet: tigert 1444 images, leopard 1396
images MSCOCO: horse, zebra 286 x 286 ʹϦαΠζͨ͠ޙɺϥϯμϜʹ256 x 256ͰΓग़͠ ▸ Training strategy Optimizer: Adam, LR: 0.0002 (~100epoch), 0ʹͳΔΑ͏ʹઢܗʹݮਰ(~200epoch) Batch size: 1
݁Ռ Results
݁Ռ Comparison with CycleGAN ▸ ఆੑൺֱʢࠨஈ: input, தஈ: AttentionGAN, ӈஈ:
CycleGAN) ▸ ఆྔൺֱ AttentionGANͰ ಛʹinputͷഎܠใΛอ͍ͯͯΔ AttentionGAN, CycleGANͷ ͲͪΒ͕ΑΓྑ͍ը૾Λ ੜ͍ͯ͠Δ͔ͷΞϯέʔτ݁Ռ (੨: AttentionGAN, : CycleGAN)
ߟ Ablation Analysis ▸ AttentionͷॏΈΛมߋ Sparse lossͷΛมߋ͍ͤͯ͘͞ͱ… ࣮ݧతʹ λ=1 ͕ϕετͩͬͨ
ߟ Comparison of Supervised Results segmentation label ࠐΈͰֶश͢Δํ͕ྑ͍݁Ռʹ
·ͱΊ Conclusion ▸ GANʹAttentionػߏΛΈࠐΉࣄʹΑΓɺΑΓϦΞϧͳυϝΠ ϯؒࣸ૾ΛՄೳʹͨ͠ ಛʹഎܠ෦ͷྼԽΛ͑Δ͜ͱʹޭ ▸ ྖҬʹΑΓҙΛ͏Α͏ʹɺattention cycle consistent-
loss, attention sparse lossΛఏҊ