Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Bayesian Statistics Made Simple
Search
Allen Downey
October 29, 2020
Programming
1
150
Bayesian Statistics Made Simple
An introduction to Bayesian statistics, presented at ODSC West 2020.
Allen Downey
October 29, 2020
Tweet
Share
More Decks by Allen Downey
See All by Allen Downey
Area under the receiver operating curve
allendowney
0
140
Other Decks in Programming
See All in Programming
顧客の画像データをテラバイト単位で配信する 画像サーバを WebP にした際に起こった課題と その対応策 ~継続的な取り組みを添えて~
takutakahashi
4
1.3k
Porting a visionOS App to Android XR
akkeylab
0
820
テスト駆動Kaggle
isax1015
1
790
初学者でも今すぐできる、Claude Codeの生産性を10倍上げるTips
s4yuba
16
13k
ペアプロ × 生成AI 現場での実践と課題について / generative-ai-in-pair-programming
codmoninc
2
22k
SQLアンチパターン第2版 データベースプログラミングで陥りがちな失敗とその対策 / Intro to SQL Antipatterns 2nd
twada
PRO
24
7.1k
スタートアップの急成長を支えるプラットフォームエンジニアリングと組織戦略
sutochin26
1
7.4k
The Niche of CDK Grant オブジェクトって何者?/the-niche-of-cdk-what-isgrant-object
hassaku63
1
630
[SRE NEXT] 複雑なシステムにおけるUser Journey SLOの導入
yakenji
0
160
フロントエンドのパフォーマンスチューニング
koukimiura
6
2.2k
The Evolution of Enterprise Java with Jakarta EE 11 and Beyond
ivargrimstad
0
340
階層化自動テストで開発に機動力を
ickx
0
320
Featured
See All Featured
Faster Mobile Websites
deanohume
308
31k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
It's Worth the Effort
3n
185
28k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
How STYLIGHT went responsive
nonsquared
100
5.6k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
5.9k
Typedesign – Prime Four
hannesfritz
42
2.7k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.4k
Agile that works and the tools we love
rasmusluckow
329
21k
Music & Morning Musume
bryan
46
6.7k
Code Review Best Practice
trishagee
69
19k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Transcript
None
None
None
None
https://commons.wikimedia.org/wiki/File:Bayes%27_Theorem_MMB_01.jpg
None
None
• •
None
None
None
None
None
None
01_cookie.ipynb
None
Hypotheses Probabilities Bowl 1 0.6 Bowl 2 0.4
unnorm = prior * likelihood prob_data = unnorm.sum() posterior =
unnorm / prob_data
None
01_cookie.ipynb
None
None
None
None
None
None
02_euro.ipynb
None
None
None
None
None
None
None
None
02_euro.ipynb
None
None
None
None
• • •
02_euro.ipynb
None
None
None
None
None
None
None
None
CC BY-SA 3.0, https://en.wikipedia.org/w/index.php?curid=5709790
None
None
None
03_bandit.ipynb
03_bandit.ipynb
None
None
None
None
None
None
03_bandit.ipynb
None
None
None
thinkbayes.com
None
thinkstats2.com
None
downey@allendowney.com/blog github website twitter email blog
None
None
None
None