Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Bayesian Statistics Made Simple
Search
Allen Downey
October 29, 2020
Programming
1
150
Bayesian Statistics Made Simple
An introduction to Bayesian statistics, presented at ODSC West 2020.
Allen Downey
October 29, 2020
Tweet
Share
More Decks by Allen Downey
See All by Allen Downey
Area under the receiver operating curve
allendowney
0
140
Other Decks in Programming
See All in Programming
Android16 Migration Stories ~Building a Pattern for Android OS upgrades~
reoandroider
0
140
SwiftDataを使って10万件のデータを読み書きする
akidon0000
0
240
Server Side Kotlin Meetup vol.16: 内部動作を理解して ハイパフォーマンスなサーバサイド Kotlin アプリケーションを書こう
ternbusty
3
240
チームの境界をブチ抜いていけ
tokai235
0
220
Go言語はstack overflowの夢を見るか?
logica0419
0
570
Devoxx BE - Local Development in the AI Era
kdubois
0
140
Devvox Belgium - Agentic AI Patterns
kdubois
1
150
Goで実践するドメイン駆動開発 AIと歩み始めた新規プロダクト開発の現在地
imkaoru
4
890
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
620
釣り地図SNSにおける有料機能の実装
nokonoko1203
0
200
組込みだけじゃない!TinyGo で始める無料クラウド開発入門
otakakot
2
370
オンデバイスAIとXcode
ryodeveloper
0
130
Featured
See All Featured
A better future with KSS
kneath
239
18k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Balancing Empowerment & Direction
lara
5
700
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
Designing for Performance
lara
610
69k
Java REST API Framework Comparison - PWX 2021
mraible
34
8.9k
Building an army of robots
kneath
305
46k
Raft: Consensus for Rubyists
vanstee
140
7.2k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3k
YesSQL, Process and Tooling at Scale
rocio
173
15k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Transcript
None
None
None
None
https://commons.wikimedia.org/wiki/File:Bayes%27_Theorem_MMB_01.jpg
None
None
• •
None
None
None
None
None
None
01_cookie.ipynb
None
Hypotheses Probabilities Bowl 1 0.6 Bowl 2 0.4
unnorm = prior * likelihood prob_data = unnorm.sum() posterior =
unnorm / prob_data
None
01_cookie.ipynb
None
None
None
None
None
None
02_euro.ipynb
None
None
None
None
None
None
None
None
02_euro.ipynb
None
None
None
None
• • •
02_euro.ipynb
None
None
None
None
None
None
None
None
CC BY-SA 3.0, https://en.wikipedia.org/w/index.php?curid=5709790
None
None
None
03_bandit.ipynb
03_bandit.ipynb
None
None
None
None
None
None
03_bandit.ipynb
None
None
None
thinkbayes.com
None
thinkstats2.com
None
[email protected]
/blog github website twitter email blog
None
None
None
None