Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Transducers
Search
Amitay Horwitz
December 24, 2023
Programming
0
45
Transducers
Amitay Horwitz
December 24, 2023
Tweet
Share
More Decks by Amitay Horwitz
See All by Amitay Horwitz
Building event sourced systems with Kafka Streams
amitayh
1
950
Event Sourcing with Kafka Streams
amitayh
1
1.1k
Datomic Spotlight
amitayh
0
94
TDD For The Curious
amitayh
0
290
Other Decks in Programming
See All in Programming
Devoxx BE - Local Development in the AI Era
kdubois
0
130
alien-signals と自作 OSS で実現する フレームワーク非依存な ロジック共通化の探求 / Exploring Framework-Agnostic Logic Sharing with alien-signals and Custom OSS
aoseyuu
2
170
組込みだけじゃない!TinyGo で始める無料クラウド開発入門
otakakot
2
360
AI Coding Meetup #3 - 導入セッション / ai-coding-meetup-3
izumin5210
0
3.4k
iOSでSVG画像を扱う
kishikawakatsumi
0
160
CSC509 Lecture 05
javiergs
PRO
0
310
Claude CodeによるAI駆動開発の実践 〜そこから見えてきたこれからのプログラミング〜
iriikeita
0
320
AIと人間の共創開発!OSSで試行錯誤した開発スタイル
mae616
2
780
Goで実践するドメイン駆動開発 AIと歩み始めた新規プロダクト開発の現在地
imkaoru
4
880
バッチ処理を「状態の記録」から「事実の記録」へ
panda728
PRO
0
190
登壇は dynamic! な営みである / speech is dynamic
da1chi
0
360
Claude Agent SDK を使ってみよう
hyshu
0
1.3k
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
173
15k
Embracing the Ebb and Flow
colly
88
4.9k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
A Tale of Four Properties
chriscoyier
161
23k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Producing Creativity
orderedlist
PRO
347
40k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
The Straight Up "How To Draw Better" Workshop
denniskardys
238
140k
The Invisible Side of Design
smashingmag
302
51k
Building a Scalable Design System with Sketch
lauravandoore
463
33k
Git: the NoSQL Database
bkeepers
PRO
431
66k
Transcript
TRANSDUCERS @amitayh
COLLECTION TRANSFORMATIONS We use them all the time…
const double = x => x * 2; const isEven
= x => x % 2 === 0; const coll = [1, 2, 3, 4, 5, 6];
const double = x => x * 2; const isEven
= x => x % 2 === 0; const coll = [1, 2, 3, 4, 5, 6]; const doubled = coll.map(double); // [2, 4, 6, 8, 10, 12]
const double = x => x * 2; const isEven
= x => x % 2 === 0; const coll = [1, 2, 3, 4, 5, 6]; const doubled = coll.map(double); const even = coll.filter(isEven); // [2, 4, 6]
const double = x => x * 2; const isEven
= x => x % 2 === 0; const coll = [1, 2, 3, 4, 5, 6]; const doubled = coll.map(double); const even = coll.filter(isEven); const sum = coll.reduce( (acc, item) => acc + item, 0 ); // 21
Q: What all these have in common? A: We can
de fi ne all of them in terms of reduce ⁉
const map = (coll, f) => { return coll.reduce( (acc,
item) => [...acc, f(item)], [] ); }; const filter = (coll, pred) => { return coll.reduce( (acc, item) => pred(item) ? [...acc, item] : acc, [] ); };
const map = (coll, f) => { return coll.reduce( (acc,
item) => [...acc, f(item)], [] ); }; const filter = (coll, pred) => { return coll.reduce( (acc, item) => pred(item) ? [...acc, item] : acc, [] ); };
const map = (coll, f) => { return coll.reduce( (acc,
item) => [...acc, f(item)], [] ); }; const filter = (coll, pred) => { return coll.reduce( (acc, item) => pred(item) ? [...acc, item] : acc, [] ); };
const map = (coll, f) => { return coll.reduce( (acc,
item) => [...acc, f(item)], [] ); }; const filter = (coll, pred) => { return coll.reduce( (acc, item) => pred(item) ? [...acc, item] : acc, [] ); };
const map = (coll, f) => { return coll.reduce( (acc,
item) => [...acc, f(item)], [] ); }; const filter = (coll, pred) => { return coll.reduce( (acc, item) => pred(item) ? [...acc, item] : acc, [] ); };
const map = (coll, f) => { return coll.reduce( (acc,
item) => [...acc, f(item)], [] ); }; const filter = (coll, pred) => { return coll.reduce( (acc, item) => pred(item) ? [...acc, item] : acc, [] ); };
OBSERVATIONS 👀 1. The actual logic is in the reducing
function - the rest is boilerplate 2. We are coupled to our input and output types 3. Chaining several operations will introduce intermediate results - wasteful: coll.map(double).filter(isEven)
1⃣
• Problem: logic in the reducing function • Solution: extract
it const map = f => (acc, item) => [...acc, f(item)]; const filter = pred => (acc, item) => pred(item) ? [...acc, item] : acc; const run = (coll, reducer) => coll.reduce(reducer, []);
const coll = [1, 2, 3, 4, 5, 6]; run(coll,
map(double)); // [2, 4, 6, 8, 10, 12] run(coll, filter(isEven)); // [2, 4, 6]
2⃣
• Problem: coupling to input and output • Solution: inject
the “step” function const map = f => (acc, item) => [...acc, f(item)]; const filter = pred => (acc, item) => pred(item) ? [...acc, item] : acc;
• Problem: coupling to input and output • Solution: inject
the “step” function const map = f => (acc, item) => [...acc, f(item)]; const filter = pred => (acc, item) => pred(item) ? [...acc, item] : acc;
• Problem: coupling to input and output • Solution: inject
the “step” function const map = f => step => (acc, item) => [...acc, f(item)]; const filter = pred => step => (acc, item) => pred(item) ? [...acc, item] : acc;
• Problem: coupling to input and output • Solution: inject
the “step” function const map = f => step => (acc, item) => step(acc, f(item)); const filter = pred => step => (acc, item) => pred(item) ? step(acc, item) : acc;
• Problem: coupling to input and output • Solution: inject
the “step” function const map = f => step => (acc, item) => step(acc, f(item)); const filter = pred => step => (acc, item) => pred(item) ? step(acc, item) : acc;
ENTER: TRANSDUCERS // reducer signature: (whatever, input) => whatever //
transducer signature: reducer => reducer
const transduce = (xf, step, acc, input) => { const
reducer = xf(step); for (let item of input) { acc = reducer(acc, item); } return acc; };
const transduce = (xf, step, acc, input) => { const
reducer = xf(step); for (let item of input) { acc = reducer(acc, item); } return acc; }; // Step functions const into = (acc, item) => [...acc, item]; const sum = (acc, item) => acc + item;
// Some transducer const xf = filter(isEven); const coll =
[1, 2, 3, 4, 5, 6]; transduce(xf, into, [], coll); // [2, 4, 6] transduce(xf, sum, 0, coll); // 12
FULL DECOUPLING 😎 • The process is separate from the
input / output sources • Reuse transformation logic • Built in collections (arrays, objects) • Custom collections (Immutable.js) • WebSockets / In fi nite streams
3⃣
• Problem: intermediate results • Solution: function composition! const identity
= x => x; const compose = (...fns) => fns.reduce( (acc, fn) => x => acc(fn(x)), identity );
// Composing transducers const xf = compose( filter(isEven), map(double) );
const coll = [1, 2, 3, 4, 5, 6]; // No intermediate results! transduce(xf, into, [], coll); // [4, 8, 12] transduce(xf, sum, 0, coll); // 24
STATEFUL TRANSDUCERS • Example: drop - remove fi rst n
elements const drop = n => step => { let remaining = n; return (acc, item) => (remaining-- > 0) ? acc : step(acc, item); }; coll = [1, 2, 3, 4, 5, 6]; transduce(drop(4), into, [], coll); // [5, 6]
OTHER COOL TRANSDUCERS • dropWhile(pred) • partition(pred) • dedupe
EARLY TERMINATION const done = x => ({value: x, __done__:
true});
EARLY TERMINATION const done = x => ({value: x, __done__:
true}); const transduce = (xf, step, acc, input) => { const reducer = xf(step); for (let item of input) { acc = reducer(acc, item); } return acc; };
EARLY TERMINATION const done = x => ({value: x, __done__:
true}); const transduce = (xf, step, acc, input) => { const reducer = xf(step); for (let item of input) { acc = reducer(acc, item); if (acc.__done__) { acc = acc.value; break; } } return acc; };
EARLY TERMINATION const done = x => ({value: x, __done__:
true}); const transduce = (xf, step, acc, input) => { const reducer = xf(step); for (let item of input) { acc = reducer(acc, item); if (acc.__done__) { acc = acc.value; break; } } return acc; };
EARLY TERMINATION • Example: take - keep fi rst n
elements const take = n => step => { let remaining = n; return (acc, item) => (remaining-- > 0) ? step(acc, item) : done(acc); }; transduce(take(2), into, [], coll); // [1, 2]
EARLY TERMINATION • Bonus! we can now use in fi
nite collections function* numbers() { let index = 0; while (true) { yield index++; } }
EARLY TERMINATION • Bonus! we can now use in fi
nite collections const xf = compose( filter(isEven), map(double), take(5) ); transduce(xf, into, [], numbers()); // [0, 4, 8, 12, 16]
Q&A 🤓
RESOURCES 📚 • Blog post: http://wix.to/G8DRABw • Talk by Rich
Hickey: http://wix.to/XMDRABw • Transducers in Scala: http://wix.to/XsDRABw • …And in JavaScript: מםכאמם