Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Transducers

 Transducers

Amitay Horwitz

December 24, 2023
Tweet

More Decks by Amitay Horwitz

Other Decks in Programming

Transcript

  1. const double = x => x * 2; const isEven

    = x => x % 2 === 0; const coll = [1, 2, 3, 4, 5, 6];
  2. const double = x => x * 2; const isEven

    = x => x % 2 === 0; const coll = [1, 2, 3, 4, 5, 6]; const doubled = coll.map(double); // [2, 4, 6, 8, 10, 12]
  3. const double = x => x * 2; const isEven

    = x => x % 2 === 0; const coll = [1, 2, 3, 4, 5, 6]; const doubled = coll.map(double); const even = coll.filter(isEven); // [2, 4, 6]
  4. const double = x => x * 2; const isEven

    = x => x % 2 === 0; const coll = [1, 2, 3, 4, 5, 6]; const doubled = coll.map(double); const even = coll.filter(isEven); const sum = coll.reduce( (acc, item) => acc + item, 0 ); // 21
  5. Q: What all these have in common? A: We can

    de fi ne all of them in terms of reduce ⁉
  6. const map = (coll, f) => { return coll.reduce( (acc,

    item) => [...acc, f(item)], [] ); }; const filter = (coll, pred) => { return coll.reduce( (acc, item) => pred(item) ? [...acc, item] : acc, [] ); };
  7. const map = (coll, f) => { return coll.reduce( (acc,

    item) => [...acc, f(item)], [] ); }; const filter = (coll, pred) => { return coll.reduce( (acc, item) => pred(item) ? [...acc, item] : acc, [] ); };
  8. const map = (coll, f) => { return coll.reduce( (acc,

    item) => [...acc, f(item)], [] ); }; const filter = (coll, pred) => { return coll.reduce( (acc, item) => pred(item) ? [...acc, item] : acc, [] ); };
  9. const map = (coll, f) => { return coll.reduce( (acc,

    item) => [...acc, f(item)], [] ); }; const filter = (coll, pred) => { return coll.reduce( (acc, item) => pred(item) ? [...acc, item] : acc, [] ); };
  10. const map = (coll, f) => { return coll.reduce( (acc,

    item) => [...acc, f(item)], [] ); }; const filter = (coll, pred) => { return coll.reduce( (acc, item) => pred(item) ? [...acc, item] : acc, [] ); };
  11. const map = (coll, f) => { return coll.reduce( (acc,

    item) => [...acc, f(item)], [] ); }; const filter = (coll, pred) => { return coll.reduce( (acc, item) => pred(item) ? [...acc, item] : acc, [] ); };
  12. OBSERVATIONS 👀 1. The actual logic is in the reducing

    function - the rest is boilerplate 2. We are coupled to our input and output types 3. Chaining several operations will introduce intermediate results - wasteful: coll.map(double).filter(isEven)
  13. • Problem: logic in the reducing function • Solution: extract

    it const map = f => (acc, item) => [...acc, f(item)]; const filter = pred => (acc, item) => pred(item) ? [...acc, item] : acc; const run = (coll, reducer) => coll.reduce(reducer, []);
  14. const coll = [1, 2, 3, 4, 5, 6]; run(coll,

    map(double)); // [2, 4, 6, 8, 10, 12] run(coll, filter(isEven)); // [2, 4, 6]
  15. • Problem: coupling to input and output • Solution: inject

    the “step” function const map = f => (acc, item) => [...acc, f(item)]; const filter = pred => (acc, item) => pred(item) ? [...acc, item] : acc;
  16. • Problem: coupling to input and output • Solution: inject

    the “step” function const map = f => (acc, item) => [...acc, f(item)]; const filter = pred => (acc, item) => pred(item) ? [...acc, item] : acc;
  17. • Problem: coupling to input and output • Solution: inject

    the “step” function const map = f => step => (acc, item) => [...acc, f(item)]; const filter = pred => step => (acc, item) => pred(item) ? [...acc, item] : acc;
  18. • Problem: coupling to input and output • Solution: inject

    the “step” function const map = f => step => (acc, item) => step(acc, f(item)); const filter = pred => step => (acc, item) => pred(item) ? step(acc, item) : acc;
  19. • Problem: coupling to input and output • Solution: inject

    the “step” function const map = f => step => (acc, item) => step(acc, f(item)); const filter = pred => step => (acc, item) => pred(item) ? step(acc, item) : acc;
  20. const transduce = (xf, step, acc, input) => { const

    reducer = xf(step); for (let item of input) { acc = reducer(acc, item); } return acc; };
  21. const transduce = (xf, step, acc, input) => { const

    reducer = xf(step); for (let item of input) { acc = reducer(acc, item); } return acc; }; // Step functions const into = (acc, item) => [...acc, item]; const sum = (acc, item) => acc + item;
  22. // Some transducer const xf = filter(isEven); const coll =

    [1, 2, 3, 4, 5, 6]; transduce(xf, into, [], coll); // [2, 4, 6] transduce(xf, sum, 0, coll); // 12
  23. FULL DECOUPLING 😎 • The process is separate from the

    input / output sources • Reuse transformation logic • Built in collections (arrays, objects) • Custom collections (Immutable.js) • WebSockets / In fi nite streams
  24. • Problem: intermediate results • Solution: function composition! const identity

    = x => x; const compose = (...fns) => fns.reduce( (acc, fn) => x => acc(fn(x)), identity );
  25. // Composing transducers const xf = compose( filter(isEven), map(double) );

    const coll = [1, 2, 3, 4, 5, 6]; // No intermediate results! transduce(xf, into, [], coll); // [4, 8, 12] transduce(xf, sum, 0, coll); // 24
  26. STATEFUL TRANSDUCERS • Example: drop - remove fi rst n

    elements const drop = n => step => { let remaining = n; return (acc, item) => (remaining-- > 0) ? acc : step(acc, item); }; coll = [1, 2, 3, 4, 5, 6]; transduce(drop(4), into, [], coll); // [5, 6]
  27. EARLY TERMINATION const done = x => ({value: x, __done__:

    true}); const transduce = (xf, step, acc, input) => { const reducer = xf(step); for (let item of input) { acc = reducer(acc, item); } return acc; };
  28. EARLY TERMINATION const done = x => ({value: x, __done__:

    true}); const transduce = (xf, step, acc, input) => { const reducer = xf(step); for (let item of input) { acc = reducer(acc, item); if (acc.__done__) { acc = acc.value; break; } } return acc; };
  29. EARLY TERMINATION const done = x => ({value: x, __done__:

    true}); const transduce = (xf, step, acc, input) => { const reducer = xf(step); for (let item of input) { acc = reducer(acc, item); if (acc.__done__) { acc = acc.value; break; } } return acc; };
  30. EARLY TERMINATION • Example: take - keep fi rst n

    elements const take = n => step => { let remaining = n; return (acc, item) => (remaining-- > 0) ? step(acc, item) : done(acc); }; transduce(take(2), into, [], coll); // [1, 2]
  31. EARLY TERMINATION • Bonus! we can now use in fi

    nite collections function* numbers() { let index = 0; while (true) { yield index++; } }
  32. EARLY TERMINATION • Bonus! we can now use in fi

    nite collections const xf = compose( filter(isEven), map(double), take(5) ); transduce(xf, into, [], numbers()); // [0, 4, 8, 12, 16]
  33. RESOURCES 📚 • Blog post: http://wix.to/G8DRABw • Talk by Rich

    Hickey: http://wix.to/XMDRABw • Transducers in Scala: http://wix.to/XsDRABw • …And in JavaScript: מםכאמם