Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Transducers
Search
Amitay Horwitz
December 24, 2023
Programming
0
43
Transducers
Amitay Horwitz
December 24, 2023
Tweet
Share
More Decks by Amitay Horwitz
See All by Amitay Horwitz
Building event sourced systems with Kafka Streams
amitayh
1
920
Event Sourcing with Kafka Streams
amitayh
1
1k
Datomic Spotlight
amitayh
0
93
TDD For The Curious
amitayh
0
280
Other Decks in Programming
See All in Programming
Javaのルールをねじ曲げろ!禁断の操作とその代償から学ぶメタプログラミング入門 / A Guide to Metaprogramming: Lessons from Forbidden Techniques and Their Price
nrslib
3
2k
Bytecode Manipulation 으로 생산성 높이기
bigstark
2
360
カクヨムAndroidアプリのリブート
numeroanddev
0
430
Perplexity Slack Botを作ってAI活用を進めた話 / AI Engineering Summit プレイベント
n3xem
0
670
Spring gRPC で始める gRPC 入門 / Introduction to gRPC with Spring gRPC
mackey0225
2
520
Is Xcode slowly dying out in 2025?
uetyo
1
130
セキュリティマネジャー廃止とクラウドネイティブ型サンドボックス活用
kazumura
1
190
データの民主化を支える、透明性のあるデータ利活用への挑戦 2025-06-25 Database Engineering Meetup#7
y_ken
0
260
統一感のある Go コードを生成 AI の力で手にいれる
otakakot
0
3k
WindowInsetsだってテストしたい
ryunen344
1
190
Passkeys for Java Developers
ynojima
3
870
Using AI Tools Around Software Development
inouehi
0
1.2k
Featured
See All Featured
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
480
Building Applications with DynamoDB
mza
95
6.5k
Agile that works and the tools we love
rasmusluckow
329
21k
BBQ
matthewcrist
89
9.7k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
How to train your dragon (web standard)
notwaldorf
92
6.1k
Into the Great Unknown - MozCon
thekraken
39
1.9k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
Transcript
TRANSDUCERS @amitayh
COLLECTION TRANSFORMATIONS We use them all the time…
const double = x => x * 2; const isEven
= x => x % 2 === 0; const coll = [1, 2, 3, 4, 5, 6];
const double = x => x * 2; const isEven
= x => x % 2 === 0; const coll = [1, 2, 3, 4, 5, 6]; const doubled = coll.map(double); // [2, 4, 6, 8, 10, 12]
const double = x => x * 2; const isEven
= x => x % 2 === 0; const coll = [1, 2, 3, 4, 5, 6]; const doubled = coll.map(double); const even = coll.filter(isEven); // [2, 4, 6]
const double = x => x * 2; const isEven
= x => x % 2 === 0; const coll = [1, 2, 3, 4, 5, 6]; const doubled = coll.map(double); const even = coll.filter(isEven); const sum = coll.reduce( (acc, item) => acc + item, 0 ); // 21
Q: What all these have in common? A: We can
de fi ne all of them in terms of reduce ⁉
const map = (coll, f) => { return coll.reduce( (acc,
item) => [...acc, f(item)], [] ); }; const filter = (coll, pred) => { return coll.reduce( (acc, item) => pred(item) ? [...acc, item] : acc, [] ); };
const map = (coll, f) => { return coll.reduce( (acc,
item) => [...acc, f(item)], [] ); }; const filter = (coll, pred) => { return coll.reduce( (acc, item) => pred(item) ? [...acc, item] : acc, [] ); };
const map = (coll, f) => { return coll.reduce( (acc,
item) => [...acc, f(item)], [] ); }; const filter = (coll, pred) => { return coll.reduce( (acc, item) => pred(item) ? [...acc, item] : acc, [] ); };
const map = (coll, f) => { return coll.reduce( (acc,
item) => [...acc, f(item)], [] ); }; const filter = (coll, pred) => { return coll.reduce( (acc, item) => pred(item) ? [...acc, item] : acc, [] ); };
const map = (coll, f) => { return coll.reduce( (acc,
item) => [...acc, f(item)], [] ); }; const filter = (coll, pred) => { return coll.reduce( (acc, item) => pred(item) ? [...acc, item] : acc, [] ); };
const map = (coll, f) => { return coll.reduce( (acc,
item) => [...acc, f(item)], [] ); }; const filter = (coll, pred) => { return coll.reduce( (acc, item) => pred(item) ? [...acc, item] : acc, [] ); };
OBSERVATIONS 👀 1. The actual logic is in the reducing
function - the rest is boilerplate 2. We are coupled to our input and output types 3. Chaining several operations will introduce intermediate results - wasteful: coll.map(double).filter(isEven)
1⃣
• Problem: logic in the reducing function • Solution: extract
it const map = f => (acc, item) => [...acc, f(item)]; const filter = pred => (acc, item) => pred(item) ? [...acc, item] : acc; const run = (coll, reducer) => coll.reduce(reducer, []);
const coll = [1, 2, 3, 4, 5, 6]; run(coll,
map(double)); // [2, 4, 6, 8, 10, 12] run(coll, filter(isEven)); // [2, 4, 6]
2⃣
• Problem: coupling to input and output • Solution: inject
the “step” function const map = f => (acc, item) => [...acc, f(item)]; const filter = pred => (acc, item) => pred(item) ? [...acc, item] : acc;
• Problem: coupling to input and output • Solution: inject
the “step” function const map = f => (acc, item) => [...acc, f(item)]; const filter = pred => (acc, item) => pred(item) ? [...acc, item] : acc;
• Problem: coupling to input and output • Solution: inject
the “step” function const map = f => step => (acc, item) => [...acc, f(item)]; const filter = pred => step => (acc, item) => pred(item) ? [...acc, item] : acc;
• Problem: coupling to input and output • Solution: inject
the “step” function const map = f => step => (acc, item) => step(acc, f(item)); const filter = pred => step => (acc, item) => pred(item) ? step(acc, item) : acc;
• Problem: coupling to input and output • Solution: inject
the “step” function const map = f => step => (acc, item) => step(acc, f(item)); const filter = pred => step => (acc, item) => pred(item) ? step(acc, item) : acc;
ENTER: TRANSDUCERS // reducer signature: (whatever, input) => whatever //
transducer signature: reducer => reducer
const transduce = (xf, step, acc, input) => { const
reducer = xf(step); for (let item of input) { acc = reducer(acc, item); } return acc; };
const transduce = (xf, step, acc, input) => { const
reducer = xf(step); for (let item of input) { acc = reducer(acc, item); } return acc; }; // Step functions const into = (acc, item) => [...acc, item]; const sum = (acc, item) => acc + item;
// Some transducer const xf = filter(isEven); const coll =
[1, 2, 3, 4, 5, 6]; transduce(xf, into, [], coll); // [2, 4, 6] transduce(xf, sum, 0, coll); // 12
FULL DECOUPLING 😎 • The process is separate from the
input / output sources • Reuse transformation logic • Built in collections (arrays, objects) • Custom collections (Immutable.js) • WebSockets / In fi nite streams
3⃣
• Problem: intermediate results • Solution: function composition! const identity
= x => x; const compose = (...fns) => fns.reduce( (acc, fn) => x => acc(fn(x)), identity );
// Composing transducers const xf = compose( filter(isEven), map(double) );
const coll = [1, 2, 3, 4, 5, 6]; // No intermediate results! transduce(xf, into, [], coll); // [4, 8, 12] transduce(xf, sum, 0, coll); // 24
STATEFUL TRANSDUCERS • Example: drop - remove fi rst n
elements const drop = n => step => { let remaining = n; return (acc, item) => (remaining-- > 0) ? acc : step(acc, item); }; coll = [1, 2, 3, 4, 5, 6]; transduce(drop(4), into, [], coll); // [5, 6]
OTHER COOL TRANSDUCERS • dropWhile(pred) • partition(pred) • dedupe
EARLY TERMINATION const done = x => ({value: x, __done__:
true});
EARLY TERMINATION const done = x => ({value: x, __done__:
true}); const transduce = (xf, step, acc, input) => { const reducer = xf(step); for (let item of input) { acc = reducer(acc, item); } return acc; };
EARLY TERMINATION const done = x => ({value: x, __done__:
true}); const transduce = (xf, step, acc, input) => { const reducer = xf(step); for (let item of input) { acc = reducer(acc, item); if (acc.__done__) { acc = acc.value; break; } } return acc; };
EARLY TERMINATION const done = x => ({value: x, __done__:
true}); const transduce = (xf, step, acc, input) => { const reducer = xf(step); for (let item of input) { acc = reducer(acc, item); if (acc.__done__) { acc = acc.value; break; } } return acc; };
EARLY TERMINATION • Example: take - keep fi rst n
elements const take = n => step => { let remaining = n; return (acc, item) => (remaining-- > 0) ? step(acc, item) : done(acc); }; transduce(take(2), into, [], coll); // [1, 2]
EARLY TERMINATION • Bonus! we can now use in fi
nite collections function* numbers() { let index = 0; while (true) { yield index++; } }
EARLY TERMINATION • Bonus! we can now use in fi
nite collections const xf = compose( filter(isEven), map(double), take(5) ); transduce(xf, into, [], numbers()); // [0, 4, 8, 12, 16]
Q&A 🤓
RESOURCES 📚 • Blog post: http://wix.to/G8DRABw • Talk by Rich
Hickey: http://wix.to/XMDRABw • Transducers in Scala: http://wix.to/XsDRABw • …And in JavaScript: מםכאמם