Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Transducers
Search
Amitay Horwitz
December 24, 2023
Programming
0
41
Transducers
Amitay Horwitz
December 24, 2023
Tweet
Share
More Decks by Amitay Horwitz
See All by Amitay Horwitz
Building event sourced systems with Kafka Streams
amitayh
1
800
Event Sourcing with Kafka Streams
amitayh
1
920
Datomic Spotlight
amitayh
0
90
TDD For The Curious
amitayh
0
280
Other Decks in Programming
See All in Programming
推し活としてのrails new/oshikatsu_ha_iizo
sakahukamaki
3
2k
Boost Performance and Developer Productivity with Jakarta EE 11
ivargrimstad
0
1.5k
Realtime API 入門
riofujimon
0
140
Hotwire or React? ~アフタートーク・本編に含めなかった話~ / Hotwire or React? after talk
harunatsujita
1
110
Streams APIとTCPフロー制御 / Web Streams API and TCP flow control
tasshi
2
340
A Journey of Contribution and Collaboration in Open Source
ivargrimstad
0
480
みんなでプロポーザルを書いてみた
yuriko1211
0
200
AWS Lambdaから始まった Serverlessの「熱」とキャリアパス / It started with AWS Lambda Serverless “fever” and career path
seike460
PRO
0
170
プロジェクト新規参入者のリードタイム短縮の観点から見る、品質の高いコードとアーキテクチャを保つメリット
d_endo
1
1.1k
シールドクラスをはじめよう / Getting Started with Sealed Classes
mackey0225
3
430
讓數據說話:用 Python、Prometheus 和 Grafana 講故事
eddie
0
390
役立つログに取り組もう
irof
28
9.4k
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
268
27k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
How GitHub (no longer) Works
holman
310
140k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
159
15k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
92
16k
Code Review Best Practice
trishagee
64
17k
The Cost Of JavaScript in 2023
addyosmani
45
6.7k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
27
4.2k
Bash Introduction
62gerente
608
210k
How to train your dragon (web standard)
notwaldorf
88
5.7k
Happy Clients
brianwarren
97
6.7k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.7k
Transcript
TRANSDUCERS @amitayh
COLLECTION TRANSFORMATIONS We use them all the time…
const double = x => x * 2; const isEven
= x => x % 2 === 0; const coll = [1, 2, 3, 4, 5, 6];
const double = x => x * 2; const isEven
= x => x % 2 === 0; const coll = [1, 2, 3, 4, 5, 6]; const doubled = coll.map(double); // [2, 4, 6, 8, 10, 12]
const double = x => x * 2; const isEven
= x => x % 2 === 0; const coll = [1, 2, 3, 4, 5, 6]; const doubled = coll.map(double); const even = coll.filter(isEven); // [2, 4, 6]
const double = x => x * 2; const isEven
= x => x % 2 === 0; const coll = [1, 2, 3, 4, 5, 6]; const doubled = coll.map(double); const even = coll.filter(isEven); const sum = coll.reduce( (acc, item) => acc + item, 0 ); // 21
Q: What all these have in common? A: We can
de fi ne all of them in terms of reduce ⁉
const map = (coll, f) => { return coll.reduce( (acc,
item) => [...acc, f(item)], [] ); }; const filter = (coll, pred) => { return coll.reduce( (acc, item) => pred(item) ? [...acc, item] : acc, [] ); };
const map = (coll, f) => { return coll.reduce( (acc,
item) => [...acc, f(item)], [] ); }; const filter = (coll, pred) => { return coll.reduce( (acc, item) => pred(item) ? [...acc, item] : acc, [] ); };
const map = (coll, f) => { return coll.reduce( (acc,
item) => [...acc, f(item)], [] ); }; const filter = (coll, pred) => { return coll.reduce( (acc, item) => pred(item) ? [...acc, item] : acc, [] ); };
const map = (coll, f) => { return coll.reduce( (acc,
item) => [...acc, f(item)], [] ); }; const filter = (coll, pred) => { return coll.reduce( (acc, item) => pred(item) ? [...acc, item] : acc, [] ); };
const map = (coll, f) => { return coll.reduce( (acc,
item) => [...acc, f(item)], [] ); }; const filter = (coll, pred) => { return coll.reduce( (acc, item) => pred(item) ? [...acc, item] : acc, [] ); };
const map = (coll, f) => { return coll.reduce( (acc,
item) => [...acc, f(item)], [] ); }; const filter = (coll, pred) => { return coll.reduce( (acc, item) => pred(item) ? [...acc, item] : acc, [] ); };
OBSERVATIONS 👀 1. The actual logic is in the reducing
function - the rest is boilerplate 2. We are coupled to our input and output types 3. Chaining several operations will introduce intermediate results - wasteful: coll.map(double).filter(isEven)
1⃣
• Problem: logic in the reducing function • Solution: extract
it const map = f => (acc, item) => [...acc, f(item)]; const filter = pred => (acc, item) => pred(item) ? [...acc, item] : acc; const run = (coll, reducer) => coll.reduce(reducer, []);
const coll = [1, 2, 3, 4, 5, 6]; run(coll,
map(double)); // [2, 4, 6, 8, 10, 12] run(coll, filter(isEven)); // [2, 4, 6]
2⃣
• Problem: coupling to input and output • Solution: inject
the “step” function const map = f => (acc, item) => [...acc, f(item)]; const filter = pred => (acc, item) => pred(item) ? [...acc, item] : acc;
• Problem: coupling to input and output • Solution: inject
the “step” function const map = f => (acc, item) => [...acc, f(item)]; const filter = pred => (acc, item) => pred(item) ? [...acc, item] : acc;
• Problem: coupling to input and output • Solution: inject
the “step” function const map = f => step => (acc, item) => [...acc, f(item)]; const filter = pred => step => (acc, item) => pred(item) ? [...acc, item] : acc;
• Problem: coupling to input and output • Solution: inject
the “step” function const map = f => step => (acc, item) => step(acc, f(item)); const filter = pred => step => (acc, item) => pred(item) ? step(acc, item) : acc;
• Problem: coupling to input and output • Solution: inject
the “step” function const map = f => step => (acc, item) => step(acc, f(item)); const filter = pred => step => (acc, item) => pred(item) ? step(acc, item) : acc;
ENTER: TRANSDUCERS // reducer signature: (whatever, input) => whatever //
transducer signature: reducer => reducer
const transduce = (xf, step, acc, input) => { const
reducer = xf(step); for (let item of input) { acc = reducer(acc, item); } return acc; };
const transduce = (xf, step, acc, input) => { const
reducer = xf(step); for (let item of input) { acc = reducer(acc, item); } return acc; }; // Step functions const into = (acc, item) => [...acc, item]; const sum = (acc, item) => acc + item;
// Some transducer const xf = filter(isEven); const coll =
[1, 2, 3, 4, 5, 6]; transduce(xf, into, [], coll); // [2, 4, 6] transduce(xf, sum, 0, coll); // 12
FULL DECOUPLING 😎 • The process is separate from the
input / output sources • Reuse transformation logic • Built in collections (arrays, objects) • Custom collections (Immutable.js) • WebSockets / In fi nite streams
3⃣
• Problem: intermediate results • Solution: function composition! const identity
= x => x; const compose = (...fns) => fns.reduce( (acc, fn) => x => acc(fn(x)), identity );
// Composing transducers const xf = compose( filter(isEven), map(double) );
const coll = [1, 2, 3, 4, 5, 6]; // No intermediate results! transduce(xf, into, [], coll); // [4, 8, 12] transduce(xf, sum, 0, coll); // 24
STATEFUL TRANSDUCERS • Example: drop - remove fi rst n
elements const drop = n => step => { let remaining = n; return (acc, item) => (remaining-- > 0) ? acc : step(acc, item); }; coll = [1, 2, 3, 4, 5, 6]; transduce(drop(4), into, [], coll); // [5, 6]
OTHER COOL TRANSDUCERS • dropWhile(pred) • partition(pred) • dedupe
EARLY TERMINATION const done = x => ({value: x, __done__:
true});
EARLY TERMINATION const done = x => ({value: x, __done__:
true}); const transduce = (xf, step, acc, input) => { const reducer = xf(step); for (let item of input) { acc = reducer(acc, item); } return acc; };
EARLY TERMINATION const done = x => ({value: x, __done__:
true}); const transduce = (xf, step, acc, input) => { const reducer = xf(step); for (let item of input) { acc = reducer(acc, item); if (acc.__done__) { acc = acc.value; break; } } return acc; };
EARLY TERMINATION const done = x => ({value: x, __done__:
true}); const transduce = (xf, step, acc, input) => { const reducer = xf(step); for (let item of input) { acc = reducer(acc, item); if (acc.__done__) { acc = acc.value; break; } } return acc; };
EARLY TERMINATION • Example: take - keep fi rst n
elements const take = n => step => { let remaining = n; return (acc, item) => (remaining-- > 0) ? step(acc, item) : done(acc); }; transduce(take(2), into, [], coll); // [1, 2]
EARLY TERMINATION • Bonus! we can now use in fi
nite collections function* numbers() { let index = 0; while (true) { yield index++; } }
EARLY TERMINATION • Bonus! we can now use in fi
nite collections const xf = compose( filter(isEven), map(double), take(5) ); transduce(xf, into, [], numbers()); // [0, 4, 8, 12, 16]
Q&A 🤓
RESOURCES 📚 • Blog post: http://wix.to/G8DRABw • Talk by Rich
Hickey: http://wix.to/XMDRABw • Transducers in Scala: http://wix.to/XsDRABw • …And in JavaScript: מםכאמם