Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Good Schema Design and Why It Matters
Search
Andrew Godwin
May 15, 2014
Programming
12
1.2k
Good Schema Design and Why It Matters
A talk I gave at DjangoCon Europe 2014.
Andrew Godwin
May 15, 2014
Tweet
Share
More Decks by Andrew Godwin
See All by Andrew Godwin
Reconciling Everything
andrewgodwin
1
330
Django Through The Years
andrewgodwin
0
220
Writing Maintainable Software At Scale
andrewgodwin
0
450
A Newcomer's Guide To Airflow's Architecture
andrewgodwin
0
370
Async, Python, and the Future
andrewgodwin
2
680
How To Break Django: With Async
andrewgodwin
1
730
Taking Django's ORM Async
andrewgodwin
0
740
The Long Road To Asynchrony
andrewgodwin
0
670
The Scientist & The Engineer
andrewgodwin
1
780
Other Decks in Programming
See All in Programming
Web フロントエンドエンジニアに開かれる AI Agent プロダクト開発 - Vercel AI SDK を観察して AI Agent と仲良くなろう! #FEC余熱NIGHT
izumin5210
2
280
Advance Your Career with Open Source
ivargrimstad
0
190
Local Peer-to-Peer APIはどのように使われていくのか?
hal_spidernight
2
410
Current States of Java Web Frameworks at JCConf 2025
kishida
0
510
議事録の要点整理を自動化! サーバレス Bot 構築術
penpeen
3
1.6k
Web技術を最大限活用してRAW画像を現像する / Developing RAW Images on the Web
ssssota
2
1k
iOSDC.pdf
chronos2500
2
640
Swiftビルド弾丸ツアー - Swift Buildが作る新しいエコシステム
giginet
PRO
0
1.5k
メモリ不足との戦い〜大量データを扱うアプリでの実践例〜
kwzr
1
660
詳しくない分野でのVibe Codingで困ったことと学び/vibe-coding-in-unfamiliar-area
shibayu36
1
470
PostgreSQLで手軽にDuckDBを使う!DuckDB&pg_duckdb入門/osk2025-duckdb
takahashiikki
1
230
どの様にAIエージェントと 協業すべきだったのか?
takefumiyoshii
1
540
Featured
See All Featured
For a Future-Friendly Web
brad_frost
180
9.9k
Code Review Best Practice
trishagee
72
19k
Producing Creativity
orderedlist
PRO
347
40k
Making Projects Easy
brettharned
118
6.4k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Designing for Performance
lara
610
69k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6.1k
Navigating Team Friction
lara
189
15k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Transcript
Andrew Godwin @andrewgodwin GOOD SCHEMA DESIGN WHY IT MATTERS and
Andrew Godwin Core Developer Senior Engineer Author & Maintainer
Schemas Explicit & Implicit
Explicit PostgreSQL MySQL Oracle SQLite CouchDB MongoDB Redis ZODB Implicit
Explicit Schema ID int Name text Weight uint 1 2
3 Alice Bob Charles 76 84 65 Implicit Schema { "id": 342, "name": "David", "weight": 44, }
Explicit Schema Normalised or semi normalised structure JOINs to retrieve
related data Implicit Schema Embedded structure Related data retrieved naturally with object
Silent Failure { "id": 342, "name": "David", "weight": 74, }
{ "id": 342, "name": "Ellie", "weight": "85kg", } { "id": 342, "nom": "Frankie", "weight": 77, } { "id": 342, "name": "Frankie", "weight": -67, }
Schemas inform Storage
PostgreSQL
Adding NULLable columns: instant But must be at end of
table
CREATE INDEX CONCURRENTLY Slower, and only one at a time
Constraints after column addition This is more general advice
MySQL Locks whole table Rewrites entire storage No DDL transactions
Oracle / MSSQL / etc. Look into their strengths
Changing the Schema Databases aren't code...
You can't put your database in a VCS You can
put your schema in a VCS But your data won't always survive.
Django Migrations Codified schema change format
None
Migrations aren't enough You can't automate away a social problem!
What if we got rid of the schema? That pesky,
pesky schema.
The Nesting Problem { "id": 123, "name": "Andrew", "friends": [
{"id": 456, "name": "David"}, {"id": 789, "name": "Mazz"}, ], "likes": [ {"id": 22, "liker": {"id": 789, "name", "Mazz"}}, ], }
You don't have to use a document DB (like CouchDB,
MongoDB, etc.)
Schemaless Columns ID int Name text Weight uint Data json
1 Alice 76 { "nickname": "Al", "bgcolor": "#ff0033" }
But that must be slower... Right?
Comparison (never trust benchmarks) Loading 1.2 million records PostgreSQL MongoDB
76 sec 8 min Sequential scan PostgreSQL MongoDB 980 ms 980 ms Index scan (Postgres GINhash) PostgreSQL MongoDB 0.7 ms 1 ms
Load Shapes
Read-heavy Write-heavy Large size
Read-heavy Write-heavy Large size Wikipedia TV show page Minecraft Forums
Amazon Glacier Eventbrite Logging
Read-heavy Write-heavy Large size Offline storage Append formats In-memory cache
Many indexes Fewer indexes
Your load changes over time Scaling is not just a
flat multiplier
General Advice Write heavy → Fewer indexes Read heavy →
Denormalise Keep large data away from read/write heavy data Blob stores/filesystems are DBs too
Lessons They're near the end so you remember them.
Re-evaulate as you grow Different things matter at different sizes
Adding NULL columns is great Always prefer this if nothing
else
You'll need more than one DBMS But don't use too
many, you'll be swamped
Indexes aren't free You pay the price at write/restore time
Relational DBs are flexible They can do a lot more
than JOINing normalised tables
Thanks! Andrew Godwin @andrewgodwin eventbrite.com/jobs are hiring: