Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Good Schema Design and Why It Matters
Search
Andrew Godwin
May 15, 2014
Programming
12
1.2k
Good Schema Design and Why It Matters
A talk I gave at DjangoCon Europe 2014.
Andrew Godwin
May 15, 2014
Tweet
Share
More Decks by Andrew Godwin
See All by Andrew Godwin
Reconciling Everything
andrewgodwin
1
280
Django Through The Years
andrewgodwin
0
180
Writing Maintainable Software At Scale
andrewgodwin
0
410
A Newcomer's Guide To Airflow's Architecture
andrewgodwin
0
330
Async, Python, and the Future
andrewgodwin
2
630
How To Break Django: With Async
andrewgodwin
1
700
Taking Django's ORM Async
andrewgodwin
0
700
The Long Road To Asynchrony
andrewgodwin
0
620
The Scientist & The Engineer
andrewgodwin
1
730
Other Decks in Programming
See All in Programming
AWS Step Functions は CDK で書こう!
konokenj
5
980
Devin入門 〜月500ドルから始まるAIチームメイトとの開発生活〜 / Introduction Devin 〜Development With AI Teammates〜
rkaga
6
2.1k
[JAWS DAYS 2025] 最近の DB の競合解決の仕組みが分かった気になってみた
maroon1st
0
240
高セキュリティ・高耐障害性・サブシステム化。そして2億円
tasukulab280
2
500
Swift Testingのモチベを上げたい
stoticdev
2
260
Lambdaの監視、できてますか?Datadogを用いてLambdaを見守ろう
nealle
2
920
やっと腹落ち「スプリント毎に動くモノをリリースする」〜ゼロから始めるメガバンクグループのアジャイル実践〜
sasakendayo
0
300
Rubyと自由とAIと
yotii23
6
2k
Webフレームワークとともに利用するWeb components / JSConf.jp おかわり
spring_raining
1
170
技術好きなエンジニアが "リーダーへの進化" によって得たものと失ったもの
pospome
5
1.2k
たのしいSocketのしくみ / Socket Under a Microscope
coe401_
9
1.5k
クックパッド検索システム統合/Cookpad Search System Consolidation
giga811
0
230
Featured
See All Featured
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
50
2.3k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
227
22k
Writing Fast Ruby
sferik
628
61k
Speed Design
sergeychernyshev
28
830
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
11
580
Optimising Largest Contentful Paint
csswizardry
34
3.1k
Designing on Purpose - Digital PM Summit 2013
jponch
117
7.2k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
366
25k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.7k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.3k
Producing Creativity
orderedlist
PRO
344
40k
Building Adaptive Systems
keathley
40
2.4k
Transcript
Andrew Godwin @andrewgodwin GOOD SCHEMA DESIGN WHY IT MATTERS and
Andrew Godwin Core Developer Senior Engineer Author & Maintainer
Schemas Explicit & Implicit
Explicit PostgreSQL MySQL Oracle SQLite CouchDB MongoDB Redis ZODB Implicit
Explicit Schema ID int Name text Weight uint 1 2
3 Alice Bob Charles 76 84 65 Implicit Schema { "id": 342, "name": "David", "weight": 44, }
Explicit Schema Normalised or semi normalised structure JOINs to retrieve
related data Implicit Schema Embedded structure Related data retrieved naturally with object
Silent Failure { "id": 342, "name": "David", "weight": 74, }
{ "id": 342, "name": "Ellie", "weight": "85kg", } { "id": 342, "nom": "Frankie", "weight": 77, } { "id": 342, "name": "Frankie", "weight": -67, }
Schemas inform Storage
PostgreSQL
Adding NULLable columns: instant But must be at end of
table
CREATE INDEX CONCURRENTLY Slower, and only one at a time
Constraints after column addition This is more general advice
MySQL Locks whole table Rewrites entire storage No DDL transactions
Oracle / MSSQL / etc. Look into their strengths
Changing the Schema Databases aren't code...
You can't put your database in a VCS You can
put your schema in a VCS But your data won't always survive.
Django Migrations Codified schema change format
None
Migrations aren't enough You can't automate away a social problem!
What if we got rid of the schema? That pesky,
pesky schema.
The Nesting Problem { "id": 123, "name": "Andrew", "friends": [
{"id": 456, "name": "David"}, {"id": 789, "name": "Mazz"}, ], "likes": [ {"id": 22, "liker": {"id": 789, "name", "Mazz"}}, ], }
You don't have to use a document DB (like CouchDB,
MongoDB, etc.)
Schemaless Columns ID int Name text Weight uint Data json
1 Alice 76 { "nickname": "Al", "bgcolor": "#ff0033" }
But that must be slower... Right?
Comparison (never trust benchmarks) Loading 1.2 million records PostgreSQL MongoDB
76 sec 8 min Sequential scan PostgreSQL MongoDB 980 ms 980 ms Index scan (Postgres GINhash) PostgreSQL MongoDB 0.7 ms 1 ms
Load Shapes
Read-heavy Write-heavy Large size
Read-heavy Write-heavy Large size Wikipedia TV show page Minecraft Forums
Amazon Glacier Eventbrite Logging
Read-heavy Write-heavy Large size Offline storage Append formats In-memory cache
Many indexes Fewer indexes
Your load changes over time Scaling is not just a
flat multiplier
General Advice Write heavy → Fewer indexes Read heavy →
Denormalise Keep large data away from read/write heavy data Blob stores/filesystems are DBs too
Lessons They're near the end so you remember them.
Re-evaulate as you grow Different things matter at different sizes
Adding NULL columns is great Always prefer this if nothing
else
You'll need more than one DBMS But don't use too
many, you'll be swamped
Indexes aren't free You pay the price at write/restore time
Relational DBs are flexible They can do a lot more
than JOINing normalised tables
Thanks! Andrew Godwin @andrewgodwin eventbrite.com/jobs are hiring: