Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Good Schema Design and Why It Matters
Search
Andrew Godwin
May 15, 2014
Programming
12
1.2k
Good Schema Design and Why It Matters
A talk I gave at DjangoCon Europe 2014.
Andrew Godwin
May 15, 2014
Tweet
Share
More Decks by Andrew Godwin
See All by Andrew Godwin
Reconciling Everything
andrewgodwin
1
320
Django Through The Years
andrewgodwin
0
210
Writing Maintainable Software At Scale
andrewgodwin
0
450
A Newcomer's Guide To Airflow's Architecture
andrewgodwin
0
360
Async, Python, and the Future
andrewgodwin
2
670
How To Break Django: With Async
andrewgodwin
1
730
Taking Django's ORM Async
andrewgodwin
0
730
The Long Road To Asynchrony
andrewgodwin
0
660
The Scientist & The Engineer
andrewgodwin
1
770
Other Decks in Programming
See All in Programming
マイコンでもRustのtestがしたい その2/KernelVM Tokyo 18
tnishinaga
2
1.9k
QA x AIエコシステム段階構築作戦
osu
0
260
新世界の理解
koriym
0
130
なぜ今、Terraformの本を書いたのか? - 著者陣に聞く!『Terraformではじめる実践IaC』登壇資料
fufuhu
4
560
ゲームの物理
fadis
3
940
SwiftでMCPサーバーを作ろう!
giginet
PRO
2
230
11年かかって やっとVibe Codingに 時代が追いつきましたね
yimajo
1
260
CLI ツールを Go ライブラリ として再実装する理由 / Why reimplement a CLI tool as a Go library
ktr_0731
3
1k
Nuances on Kubernetes - RubyConf Taiwan 2025
envek
0
130
中級グラフィックス入門~効率的なメッシュレット描画~
projectasura
4
2.6k
Reactの歴史を振り返る
tutinoko
1
180
React は次の10年を生き残れるか:3つのトレンドから考える
oukayuka
41
16k
Featured
See All Featured
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
47
9.6k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.6k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
The World Runs on Bad Software
bkeepers
PRO
70
11k
BBQ
matthewcrist
89
9.8k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Practical Orchestrator
shlominoach
190
11k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Git: the NoSQL Database
bkeepers
PRO
431
65k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
880
Transcript
Andrew Godwin @andrewgodwin GOOD SCHEMA DESIGN WHY IT MATTERS and
Andrew Godwin Core Developer Senior Engineer Author & Maintainer
Schemas Explicit & Implicit
Explicit PostgreSQL MySQL Oracle SQLite CouchDB MongoDB Redis ZODB Implicit
Explicit Schema ID int Name text Weight uint 1 2
3 Alice Bob Charles 76 84 65 Implicit Schema { "id": 342, "name": "David", "weight": 44, }
Explicit Schema Normalised or semi normalised structure JOINs to retrieve
related data Implicit Schema Embedded structure Related data retrieved naturally with object
Silent Failure { "id": 342, "name": "David", "weight": 74, }
{ "id": 342, "name": "Ellie", "weight": "85kg", } { "id": 342, "nom": "Frankie", "weight": 77, } { "id": 342, "name": "Frankie", "weight": -67, }
Schemas inform Storage
PostgreSQL
Adding NULLable columns: instant But must be at end of
table
CREATE INDEX CONCURRENTLY Slower, and only one at a time
Constraints after column addition This is more general advice
MySQL Locks whole table Rewrites entire storage No DDL transactions
Oracle / MSSQL / etc. Look into their strengths
Changing the Schema Databases aren't code...
You can't put your database in a VCS You can
put your schema in a VCS But your data won't always survive.
Django Migrations Codified schema change format
None
Migrations aren't enough You can't automate away a social problem!
What if we got rid of the schema? That pesky,
pesky schema.
The Nesting Problem { "id": 123, "name": "Andrew", "friends": [
{"id": 456, "name": "David"}, {"id": 789, "name": "Mazz"}, ], "likes": [ {"id": 22, "liker": {"id": 789, "name", "Mazz"}}, ], }
You don't have to use a document DB (like CouchDB,
MongoDB, etc.)
Schemaless Columns ID int Name text Weight uint Data json
1 Alice 76 { "nickname": "Al", "bgcolor": "#ff0033" }
But that must be slower... Right?
Comparison (never trust benchmarks) Loading 1.2 million records PostgreSQL MongoDB
76 sec 8 min Sequential scan PostgreSQL MongoDB 980 ms 980 ms Index scan (Postgres GINhash) PostgreSQL MongoDB 0.7 ms 1 ms
Load Shapes
Read-heavy Write-heavy Large size
Read-heavy Write-heavy Large size Wikipedia TV show page Minecraft Forums
Amazon Glacier Eventbrite Logging
Read-heavy Write-heavy Large size Offline storage Append formats In-memory cache
Many indexes Fewer indexes
Your load changes over time Scaling is not just a
flat multiplier
General Advice Write heavy → Fewer indexes Read heavy →
Denormalise Keep large data away from read/write heavy data Blob stores/filesystems are DBs too
Lessons They're near the end so you remember them.
Re-evaulate as you grow Different things matter at different sizes
Adding NULL columns is great Always prefer this if nothing
else
You'll need more than one DBMS But don't use too
many, you'll be swamped
Indexes aren't free You pay the price at write/restore time
Relational DBs are flexible They can do a lot more
than JOINing normalised tables
Thanks! Andrew Godwin @andrewgodwin eventbrite.com/jobs are hiring: