Forms Eigenvalues and Eigenvectors 5.11 Testing quadratic forms: 2 × 2 symmetric matrices. Example: Determine the definiteness of the symmetric matrices A− E. A = 1 0 0 1 , B = −3 −3 −3 −3 , C = −2 1 1 −2 , D = 3 3 3 3 , E = −2 −3 −3 −2 . Solutions. |A| = 1 > 0, and diag(1, 1) > 0 ⇒ A is positive definite. |B| = 0, and diag(−3, −3) < 0 ⇒ B is negative semidefinite. |C| = 3 > 0, and diag(−2, −2) < 0 ⇒ C is negative definite. |D| = 0, and diag(3, 3) > 0 ⇒ D is positive semidefinite. |E| = −5, and diag(−2, −2) < 0 ⇒ E is neither positive (semi)definite nor negative semi(definite).