Band alignment and defect chemistry of functional oxides: A concise discussion
A presentation delivered at a special workshop on transparent conducting oxides at Trinity College Dublin in September 2009. Later summarised in http://pubs.acs.org/doi/abs/10.1021/ar400115x
] O 2 2 reduction CB E e •• + + Presume that oxygen vacancies are the source of n-type behaviour (electron carriers): Defect Energy Molecular O2 Conduction Band Energy In2 O3 : J. H. W. De Wit, J. Sol. State Chem. 8, 142 (1973)
R. A. Catlow, J. Sol. State Chem. 85, 65 (1990). Conduction Band: Defect Formation energy Schottky Trio 5.19 eV Anion Frenkel Pair 5.54 eV Cation Frenkel Pair 9.63 eV
and Reduction / O 2 1 = E[V ] O 2 2 reduction CB E e •• + + O 2 1 ( ) = E[V ] O 2 2 reduction e e E µ µ •• + + Ereduction = 6.0 eV O Vx = 5.0 eV O O (V / V ) x ε •• “Spaghetti defects” In2 O3 : Lany and Zunger, Phys. Rev. Lett. 98, 045501 (2007).
layer (A). Type IIA: ‘Spatially Indirect’. Electron and hole separation. Type IIB: Effective ‘zero gap’. Electron transfer from B to A. Reference: Yu and Cardona, Fundamentals of Semiconductors. e.g. (GaAs|GaAlAs) (AlAs|GaAs) (InAs|GaSb) Type I Type IIA Type IIB A B A B A B
levels, even within the same code (here VASP). This applies to both band offsets and charged defect cell alignment. Q. Is this choice important? • Deep (atomic-like) core level, e.g. O 1s. Walsh & Wei, Phys. Rev. B 76, 195208 (2007). • Local electrostatic potential (integrated in fixed radius). Lany & Zunger, Phys. Rev. B 78, 235104 (2008). • Averaged electrostatic potential. Janotti & Van de Walle, Phys. Rev. B 75, 121201 (2007).
in semiconductors. M. Cardona and N. E. Christensen, Phys. Rev. B 35, 6182 (1987). Band offsets of wide band-gap oxides and implications for future electronic devices. J. Roberston, J. Vac. Sci. Technol. B 18, 1785 (2000). Branch-point energies and band discontinuities of III-nitrides and III-/II-oxides from quasiparticle band-structure calculations. A. Schleife, F. Fuchs, J. Furthmuller and F. Bechstedt, Appl. Phys. Lett. 94, 152104 (2009).
band position with reference to the vacuum level. • Obtain offsets without performing a heterojunction calculation. • Can use core level or electrostatic potential as the bulk reference.
by simple chemical principles. • Absolute band offsets are a challenging problem for bulk solid-state systems, especially with the structural diversity of metal oxides. • Charge neutrality level is a useful concept for a given material, but no universal alignment for different types of system. • Vacuum alignment for “bulk” band edges deserves more detailed exploration. Acknowledgements: Useful discussions with Graeme Watson, Su-Huai Wei and Richard Catlow. EU for Marie-Curie Fellowship.