$30 off During Our Annual Pro Sale. View Details »

Band alignment and defect chemistry of functional oxides: A concise discussion

Aron Walsh
September 11, 2009

Band alignment and defect chemistry of functional oxides: A concise discussion

A presentation delivered at a special workshop on transparent conducting oxides at Trinity College Dublin in September 2009. Later summarised in http://pubs.acs.org/doi/abs/10.1021/ar400115x

Aron Walsh

September 11, 2009
Tweet

More Decks by Aron Walsh

Other Decks in Science

Transcript

  1. Band alignment and defect chemistry of
    functional oxides: A concise discussion
    Aron Walsh
    Department of Chemistry,
    University College London

    View Slide

  2. Defect Phenomenology

    View Slide

  3. Reduction of Metal Oxides
    /
    O 2
    1
    = E[V ] O 2
    2
    reduction CB
    E e
    •• + +
    Presume that oxygen vacancies are the source of n-type
    behaviour (electron carriers):
    Defect Energy Molecular O2
    Conduction Band
    Energy
    In2
    O3
    : J. H. W. De Wit, J.
    Sol. State Chem. 8, 142
    (1973)

    View Slide

  4. The Case of Tin Dioxide
    C. M. Freeman and C. R. A. Catlow,
    J. Sol. State Chem. 85, 65 (1990).
    Conduction Band:
    Defect Formation energy
    Schottky Trio 5.19 eV
    Anion Frenkel Pair 5.54 eV
    Cation Frenkel Pair 9.63 eV

    View Slide

  5. Valence Band
    Conduction Band
    0 µe
    (eV) 3
    Band edges and Reduction
    /
    O 2
    1
    = E[V ] O 2
    2
    reduction CB
    E e
    •• + +
    O 2
    1
    ( ) = E[V ] O 2
    2
    reduction e e
    E µ µ
    •• + +
    Ereduction
    = 6.0 eV
    O
    Vx = 5.0 eV
    O O
    (V / V )
    x
    ε ••
    “Spaghetti defects”
    In2
    O3
    : Lany and Zunger, Phys.
    Rev. Lett. 98, 045501 (2007).

    View Slide

  6. Metal Oxide “Doping Asymmetry”
    Cu / Ag d
    Zn / Cd / Sn / In s
    Ti / V d
    Sn / Pb / Bi s
    Conduction Band
    Valence Band [O p]

    View Slide

  7. Metal Oxide “Doping Asymmetry”
    Characteristics: Reducible species; low electron affinity;
    low conduction band.
    In2
    O3
    > SnO2
    > ZnO > TiO2
    Characteristics: Oxidizable species; low ionization
    potential; high valence band.
    Cu2
    O > PbO > SnO > NiO
    p-type (electron deficient)
    n-type (electron rich)
    1D. O. Scanlon, B. J. Morgan, G. W. Watson and A. Walsh,
    Phys. Rev. Lett. 103, 096405 (2009).
    1

    View Slide

  8. Quantitative Band Offsets
    How to quantitatively calculate the ‘natural’ band edge
    positions of two materials?
    Hi
    ε(+/-)

    View Slide

  9. Offset Classification
    Type I: Electrons and holes confined in one layer (A).
    Type IIA: ‘Spatially Indirect’. Electron and hole separation.
    Type IIB: Effective ‘zero gap’. Electron transfer from B to A.
    Reference: Yu and Cardona, Fundamentals of Semiconductors.
    e.g. (GaAs|GaAlAs) (AlAs|GaAs) (InAs|GaSb)
    Type I Type IIA Type IIB
    A B A B A B

    View Slide

  10. Experimental Offsets

    View Slide

  11. Theory: Choice of Reference Level
    Different studies adopt different reference levels, even within the
    same code (here VASP). This applies to both band offsets and
    charged defect cell alignment.
    Q. Is this choice important?
    • Deep (atomic-like) core level, e.g. O 1s.
    Walsh & Wei, Phys. Rev. B 76, 195208 (2007).
    • Local electrostatic potential (integrated in fixed radius).
    Lany & Zunger, Phys. Rev. B 78, 235104 (2008).
    • Averaged electrostatic potential.
    Janotti & Van de Walle, Phys. Rev. B 75, 121201 (2007).

    View Slide

  12. Theory: Choice of Reference Level
    An example: (AlAs|GaAs); isovalent, isostructural, lattice matched.
    AlAs:
    Reference
    – VBM (eV)
    GaAs:
    Reference
    – VBM (eV)
    Bulk
    Difference
    Superlattice
    (Δ Reference)
    Total
    Difference
    11714.407 11715.316 0.909 -0.426 0.48
    53.543 54.339 0.796 -0.304 0.49
    4.183 4.604 0.421 0.106 0.53
    Isolated

    View Slide

  13. Quantitative Band Offsets

    View Slide

  14. Choice of Heterojunction Interface
    Ensure no dipole across heterostructure.

    View Slide

  15. Oxides ≠ III-Vs
    BiVO4
    Bi2
    Sn2
    O7
    CuAlO2
    CoAl2
    O4
    PbO
    In2
    O3

    View Slide

  16. Charge Neutrality Level
    a.k.a. Effective midgap energy or Branch-point energy
    Γ-centered k-mesh DFT eigenvalues

    View Slide

  17. Charge Neutrality Level
    Acoustic deformation potentials and heterostructure band
    offsets in semiconductors.
    M. Cardona and N. E. Christensen, Phys. Rev. B 35, 6182 (1987).
    Band offsets of wide band-gap oxides and implications for
    future electronic devices.
    J. Roberston, J. Vac. Sci. Technol. B 18, 1785 (2000).
    Branch-point energies and band discontinuities of III-nitrides
    and III-/II-oxides from quasiparticle band-structure
    calculations.
    A. Schleife, F. Fuchs, J. Furthmuller and F. Bechstedt, Appl. Phys. Lett.
    94, 152104 (2009).

    View Slide

  18. Charge Neutrality Level
    Schleife et al., APL ‘09
    R
    In2
    O3
    PbO2
    BiVO4
    TiO2
    C
    Walsh, Unpublished’09
    MgO ZnO CdO In2
    O3

    View Slide

  19. An ‘Inspired’ Approach
    Objectives:
    • To define an absolute
    valence band position with
    reference to the vacuum
    level.
    • Obtain offsets without
    performing a heterojunction
    calculation.
    • Can use core level or
    electrostatic potential as the
    bulk reference.

    View Slide

  20. Vacuum Level
    AlAs GaAs GaN
    (110) 4.99 4.84 5.57
    (110)+H* 5.03 4.55 5.41
    Bare:
    Pseudo-H:
    Wei’09:
    (AlAs|GaAs)
    0.16
    0.48
    0.56
    (GaN|GaAs)
    0.73
    0.86
    2.55
    Open questions: Surface polarisation? Surface relaxation?
    Surface passivation?
    • Vacuum Level – Bulk valence band separation.

    View Slide

  21. Summary
    • Doping asymmetry in metal oxides can be understood by
    simple chemical principles.
    • Absolute band offsets are a challenging problem for bulk
    solid-state systems, especially with the structural diversity of
    metal oxides.
    • Charge neutrality level is a useful concept for a given
    material, but no universal alignment for different types of
    system.
    • Vacuum alignment for “bulk” band edges deserves more
    detailed exploration.
    Acknowledgements: Useful discussions with
    Graeme Watson, Su-Huai Wei and Richard
    Catlow. EU for Marie-Curie Fellowship.

    View Slide