Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning 15 min
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Asa Shin
March 20, 2017
Science
0
2.2k
Machine Learning 15 min
VI or Emacs
Asa Shin
March 20, 2017
Tweet
Share
More Decks by Asa Shin
See All by Asa Shin
RNN camp #1
asakawa
0
460
Other Decks in Science
See All in Science
次代のデータサイエンティストへ~スキルチェックリスト、タスクリスト更新~
datascientistsociety
PRO
2
27k
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
150
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
PRO
0
140
2025-06-11-ai_belgium
sofievl
1
220
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
880
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
940
凸最適化からDC最適化まで
santana_hammer
1
350
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
190
良書紹介04_生命科学の実験デザイン
bunnchinn3
0
110
なぜ21は素因数分解されないのか? - Shorのアルゴリズムの現在と壁
daimurat
0
290
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
520
機械学習 - DBSCAN
trycycle
PRO
0
1.5k
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
97
6.5k
Mobile First: as difficult as doing things right
swwweet
225
10k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
Unsuck your backbone
ammeep
671
58k
Evolving SEO for Evolving Search Engines
ryanjones
0
120
For a Future-Friendly Web
brad_frost
182
10k
The Mindset for Success: Future Career Progression
greggifford
PRO
0
230
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
170
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.3k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Getting science done with accelerated Python computing platforms
jacobtomlinson
2
110
Transcript
VI にする?それもまだ EMacs ? 本日の前座をつとめさせていただきます 浅川伸一
[email protected]
alternate to マジックキングダム
テーズニーランド
自己紹介 浅川伸一: 博士( 文学) 東京女子大学情報処理センター勤務。早稲田大学在学時はピアジェ の発生論的認識論に心酔する。卒業後エルマンネットの考案者ジェフ・エルマ ンに師事,薫陶を受ける。以来人間の高次認知機能をシミュレートすることを 通して知的であるとはどういうことかを考えていると思っていた。 著書に「Python で体験する深層学習」(
コロナ社,2016) ,「ディープラーニング, ビッグデータ,機械学習あるいはその心理学」( 新曜社,2015) ,「ニューラルネッ トワークの数理的基礎」「脳損傷とニューラルネットワークモデル,神経心理
学への適用例」いずれも守一雄他編「コネクショニストモデルと心理学」(2001) 北大路書房など
本日の目標 VAE をわかりやすく説明すること Kingma et. al.(2014) SSL Fig.1(a) より 動画もご覧ください
ニューラルネットワークへの批判: 何をやっているのか分からない---> 解釈も ニューラルネットワークやらせれば良い
背景 + + + + 忘却ゲート 入力ゲート ブロックへの入力 セル +
出力ゲート ピープホール ブロックからの出力 g h ... 入力 ... ... ... ... ... ... ... ... 再帰入力 ... 入力 再帰入力 入力 再帰入力 入力 再帰入力 出力 再帰入力へ 1.0 g c i f y o 浅川の説明が意外と受けが良かったので調子に乗って...
Bayes theorem を所与のデータ,θ を推定すべきパラメータとしたとき, ベイズの定理は以 下で与えられる ところで, 右辺分子 p( |θ)p(θ) = p(
,θ) を同時分布, 右辺分母 p( ) = ∫p( | θ)p(θ)dθ を エビデンスまたは証拠と申しました。すなわち以下のように書き換える ことができます。 データ解析の分野ではデータが与えられたときにパラメータを推 定することになりますが, 生成モデル と考えた時には上記のベイズの定理を ひっ くり返すことができます。 本来は,というはもともとこのようにしてデータは作られたわけですから,そ れほど無理のない仮定です。
EM Algorithm 欠損値の推定: 機械学習にかぎらずデータ解析を考える場合,データに欠損値が ある場合を考えます。 一番簡単な方法は,欠損値の有るデータを捨ててしまう ことでしょう。 たとえばこのイベントに参加している人の平均身長を考える場合,今日都合が 悪くなって突然欠席した 方の身長を考慮にいれることを考えます。
この場にいる人の身長が,欠席者の身長に影響を与えるというのは奇妙に見え ます( ?) EM アルゴリズムだと分布を記述する母数であることが多いです。
Monte Carlo EM Algorithm 母数をあたえるということは,モンテカルロ法を使う方法が提案されました。 名付けて 貧乏人のデータ拡張
Variational Inference 実線は生成モデル pθ(Z)p(X|Z) を表す 点線は変分近似 qϕ(Z|X) と 事後確率 pθ(Z|X)
を表す KL ダイバージェンス は 非負 なので,
文献 Kingma and Welling (2013) Auto-Encoding Variational Bayes, arXiv:1312.6114 Kingma
et. al, (2014) Semi-supervised Learning with Deep Generative Models, arXiv:1406.5298