Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning 15 min
Search
Asa Shin
March 20, 2017
Science
0
2.2k
Machine Learning 15 min
VI or Emacs
Asa Shin
March 20, 2017
Tweet
Share
More Decks by Asa Shin
See All by Asa Shin
RNN camp #1
asakawa
0
460
Other Decks in Science
See All in Science
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
1k
高校生就活へのDA導入の提案
shunyanoda
0
6.1k
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.2k
凸最適化からDC最適化まで
santana_hammer
1
340
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1.1k
会社でMLモデルを作るとは @電気通信大学 データアントレプレナーフェロープログラム
yuto16
1
450
知能とはなにかーヒトとAIのあいだー
tagtag
0
160
デジタルアーカイブの教育利用促進を目指したメタデータLOD基盤に関する研究 / Research on a Metadata LOD Platform for Promoting Educational Uses of Digital Archives
masao
0
130
検索と推論タスクに関する論文の紹介
ynakano
1
110
20251212_LT忘年会_データサイエンス枠_新川.pdf
shinpsan
0
180
データベース08: 実体関連モデルとは?
trycycle
PRO
0
1k
サイコロで理解する原子核崩壊と拡散現象 〜単純化されたモデルで本質を理解する〜
syotasasaki593876
0
130
Featured
See All Featured
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
190
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
How STYLIGHT went responsive
nonsquared
100
6k
The Language of Interfaces
destraynor
162
25k
Bash Introduction
62gerente
615
210k
A Tale of Four Properties
chriscoyier
162
23k
Done Done
chrislema
186
16k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
190
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
99
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
34
Transcript
VI にする?それもまだ EMacs ? 本日の前座をつとめさせていただきます 浅川伸一
[email protected]
alternate to マジックキングダム
テーズニーランド
自己紹介 浅川伸一: 博士( 文学) 東京女子大学情報処理センター勤務。早稲田大学在学時はピアジェ の発生論的認識論に心酔する。卒業後エルマンネットの考案者ジェフ・エルマ ンに師事,薫陶を受ける。以来人間の高次認知機能をシミュレートすることを 通して知的であるとはどういうことかを考えていると思っていた。 著書に「Python で体験する深層学習」(
コロナ社,2016) ,「ディープラーニング, ビッグデータ,機械学習あるいはその心理学」( 新曜社,2015) ,「ニューラルネッ トワークの数理的基礎」「脳損傷とニューラルネットワークモデル,神経心理
学への適用例」いずれも守一雄他編「コネクショニストモデルと心理学」(2001) 北大路書房など
本日の目標 VAE をわかりやすく説明すること Kingma et. al.(2014) SSL Fig.1(a) より 動画もご覧ください
ニューラルネットワークへの批判: 何をやっているのか分からない---> 解釈も ニューラルネットワークやらせれば良い
背景 + + + + 忘却ゲート 入力ゲート ブロックへの入力 セル +
出力ゲート ピープホール ブロックからの出力 g h ... 入力 ... ... ... ... ... ... ... ... 再帰入力 ... 入力 再帰入力 入力 再帰入力 入力 再帰入力 出力 再帰入力へ 1.0 g c i f y o 浅川の説明が意外と受けが良かったので調子に乗って...
Bayes theorem を所与のデータ,θ を推定すべきパラメータとしたとき, ベイズの定理は以 下で与えられる ところで, 右辺分子 p( |θ)p(θ) = p(
,θ) を同時分布, 右辺分母 p( ) = ∫p( | θ)p(θ)dθ を エビデンスまたは証拠と申しました。すなわち以下のように書き換える ことができます。 データ解析の分野ではデータが与えられたときにパラメータを推 定することになりますが, 生成モデル と考えた時には上記のベイズの定理を ひっ くり返すことができます。 本来は,というはもともとこのようにしてデータは作られたわけですから,そ れほど無理のない仮定です。
EM Algorithm 欠損値の推定: 機械学習にかぎらずデータ解析を考える場合,データに欠損値が ある場合を考えます。 一番簡単な方法は,欠損値の有るデータを捨ててしまう ことでしょう。 たとえばこのイベントに参加している人の平均身長を考える場合,今日都合が 悪くなって突然欠席した 方の身長を考慮にいれることを考えます。
この場にいる人の身長が,欠席者の身長に影響を与えるというのは奇妙に見え ます( ?) EM アルゴリズムだと分布を記述する母数であることが多いです。
Monte Carlo EM Algorithm 母数をあたえるということは,モンテカルロ法を使う方法が提案されました。 名付けて 貧乏人のデータ拡張
Variational Inference 実線は生成モデル pθ(Z)p(X|Z) を表す 点線は変分近似 qϕ(Z|X) と 事後確率 pθ(Z|X)
を表す KL ダイバージェンス は 非負 なので,
文献 Kingma and Welling (2013) Auto-Encoding Variational Bayes, arXiv:1312.6114 Kingma
et. al, (2014) Semi-supervised Learning with Deep Generative Models, arXiv:1406.5298