Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Introduction to Model Registry

Introduction to Model Registry

「モデルのバージョン管理どうするのがいいですか」と聞かれることが多くなってきたので作成した資料です。

Asei Sugiyama

October 13, 2022
Tweet

More Decks by Asei Sugiyama

Other Decks in Technology

Transcript

  1. import json import model_card_toolkit as mctlib model_card_json = { 'model_details':

    {'name': 'Census Income Classifier'}, 'model_details': {'overview': 'This is a wide and deep Keras model...'}, 'model_details': { 'owners':[{"name": "Model Cards Team", "contact": "[email protected]"}]}, 'considerations':{ 'use_cases':[{ "description":'This dataset that this model was trained on...'}] }, 'considerations': { 'limitations': [{ 'description':'This is a class-imbalanced dataset...'}] }, 'considerations': { 'ethical_considerations': [{ 'name': 'We risk expressing the viewpoint that...', 'mitigation_strategy': 'As mentioned, some interventions may need to be ...' }] } }
  2. # Specify the model source model_url = "s3://your-bucket-name/model.tar.gz" modelpackage_inference_specification =

    { "InferenceSpecification": { "Containers": [ { "Image": '257758044811.dkr.ecr.us-east-2.amazonaws.com/sagemaker-xgboost:1.2-1', "ModelDataUrl": model_url } ], "SupportedContentTypes": [ "text/csv" ], "SupportedResponseMIMETypes": [ "text/csv" ], } }
  3. create_model_package_input_dict = { "ModelPackageGroupName" : model_package_group_name, "ModelPackageDescription" : "Model to

    detect 3 different types of irises (Setosa, Versicolour, and Virginica)", "ModelApprovalStatus" : "PendingManualApproval" } create_model_package_input_dict.update(modelpackage_inference_specification)