Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Speaker Deck
PRO
Sign in
Sign up for free
実用 Confident Learning
Asei Sugiyama
October 13, 2022
Technology
1
1.2k
実用 Confident Learning
みんなのPython勉強会#86 での発表資料です
https://speakerdeck.com/asei/confident-learning
よりも事例の紹介に注力しています
Asei Sugiyama
October 13, 2022
Tweet
Share
More Decks by Asei Sugiyama
See All by Asei Sugiyama
速習 Machine Learning Lens
asei
1
420
When should we use Kubernetes for the Machine Learning platform?
asei
1
230
インタビューから見えてきた MLOps のレベルと現場の課題
asei
2
1.2k
機械学習システム開発と運用の落とし穴
asei
16
6.8k
Introduction to Model Registry
asei
0
220
Confident Learning
asei
2
1.1k
対話型アプリケーション入門
asei
0
190
機械学習システムアーキテクチャ入門 #2
asei
3
800
Introduction to MLOps
asei
9
2.1k
Other Decks in Technology
See All in Technology
Amazon Forecast を使って売上予測をしてみた
tomuro
0
300
【NGK2023S】 ノードエディタ形式の画像処理ツール「Image-Processing-Node-Editor」
kazuhitotakahashi
0
210
NGINXENG JP#2 - 3-NGINX Plus・プロダクトのアップデート
hiropo20
0
150
AKIBA.SaaS資料
yasumuusan
0
160
WebLogic Server for OCI 概要
oracle4engineer
PRO
3
840
CUEとKubernetesカスタムオペレータを用いた新しいネットワークコントローラをつくってみた
hrk091
0
220
Optimizing your Swift code
kateinoigakukun
0
1.3k
Exploring MapStore Release 2022.02: improved 3DTiles support and more
simboss
PRO
0
170
EMになって最初の失敗談 - コミュニケーション編 -
fukuiretu
1
330
SignalR を使ったアプリケーション開発をより快適に!
nenonaninu
0
140
- Rでオブジェクト指向プログラミング- クラス設計入門の入門
kotatyamtema
1
670
エンタープライズ領域でのブロックチェーン・インターオペラビリティの発展 / Enterprise Blockchain Interoperability
gakumura
0
100
Featured
See All Featured
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
182
15k
Gamification - CAS2011
davidbonilla
75
4.1k
Atom: Resistance is Futile
akmur
256
24k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
120
29k
Scaling GitHub
holman
453
140k
No one is an island. Learnings from fostering a developers community.
thoeni
12
1.5k
The Power of CSS Pseudo Elements
geoffreycrofte
52
4.3k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
349
27k
The Invisible Side of Design
smashingmag
292
48k
Teambox: Starting and Learning
jrom
124
7.9k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
657
120k
The Mythical Team-Month
searls
210
40k
Transcript
Confident Learning Asei Sugiyama
TOC Data-centric AI 振り返り <- Confident Learning 概要 実践 Confident
Learning
Data-centric AI 振り返り Data-centric AI Confident Learning Data Perf
Data-centric AI データの改善に着目したム ーブメント モデルよりもデータの改善 のほうが効果的という Andrew Ng の過去の経験に 基づく
2021 年 12 月に大きなワー クショップが行われた
Confident Learning ワークショップの中で紹介 された取り組みの 1 つ データセットに含まれるラ ベルの誤りを検出 詳細は後述
Data Perf ML Perf: 機械学習アルゴリ ズムのベンチマーク Data Perf: データセットのベ ンチマーク
いずれはアルゴリズム - テ スト - データセットをすべ てインクリメンタルに改善 するフレームワークを提供 するという野心的な提案
TOC Data-centric AI 振り返り Confident Learning 概要 <- 実践 Confident
Learning
Confident Learning 概要 背景 論文の内容 手法 結果 Pervasive Label Errors
in Test Sets Destabilize Machine Learning Benchmarks https://arxiv.org/abs/2103.14749
背景 Hinton が MNIST (LeCun が作成) の 誤り 1 件を見つけて喜んでいるのを
見ていた 「こんなに有名な人がこんなに喜ん でいるのならこれは価値があるので は」と思ったのがきっかけ Cleanlab: Labeled Datasets that Correct Themselves Automatically // Curtis Northcutt // MLOps Coffee Sessions #105 https://anchor.fm/mlops/episodes/Cleanlab-Labeled- Datasets-that-Correct-Themselves-Automatically--Curtis-Northcutt--MLOps-Coffee- Sessions-105-e1k777l/a-a850eq6
論文の内容 Confident Learning という 手法を提案 多クラス分類において、既 存の手法よりも効率的にラ ベルの誤りを発見 MNIST, ImageNet
などのデ ータセットにラベルの誤り を実際に発見した Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks https://arxiv.org/abs/2103.14749
手法 データセットを用いてモデ ルを訓練 & 推論 (k-fold) 推論結果に Confident Learning を適用し、誤りが
疑われるデータの一覧を作 成 Amazon Mechanical Turk で改めてアノテーション Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks https://arxiv.org/abs/2103.14749
結果: データセットの誤り率 Pervasive Label Errors in Test Sets Destabilize Machine
Learning Benchmarks https://arxiv.org/abs/2103.14749
結果: 提案のワークフローで発生する見逃し Pervasive Label Errors in Test Sets Destabilize Machine
Learning Benchmarks https://arxiv.org/abs/2103.14749
どうしようもない例 右の画像は ImageNet で tick (ダニ) とラベル付けされたもの クラウドソーシングで scorpion とラ
ベルが振り直された 実際は Solifugae (ヒヨケムシ、クモ やサソリではない)
TOC Data-centric AI 振り返り Confident Learning 概要 実践 Confident Learning
<-
背景 画像から疾病の陽性/陰性を判定する機械学習モデルを構築中 陽性/陰性の判定には高い専門性が必要なため、少数の専門家 (医療業務 従事者) が画像をアノテーション 構築したデータセットをもとに画像から陽性/陰性を判定するモデルを構 築 テストデータにおいてモデルが誤った画像について、専門家に念のため の再確認したところ、機械学習モデルの判断のほうが正しかったという
結果に
問題 構築した画像データセットに誤りがどの程度含まれているのか不明 データセットに含まれる画像が 4,000 件あり、今後も増える予定 専門家が全件チェックするのは現実的でないし、全件チェックした結果 を信用してよいのかどうかも不明
目標 1. アノテーションの結果がどの程度信用できるのか見積もること 2. データセットに含まれる誤りを効率的に修正するための手法を確立する こと
Clean Lab Confident Learning の OSS 実装 Python から利用可能 cleanlab/cleanlab
https://github.com/cleanlab/cleanlab
コード アルゴリズムはモデルの出力のみを用いるため、幅広い分類モデルを利 用可能 from cleanlab.filter import find_label_issues ordered_label_issues = find_label_issues(
labels=labels, pred_probs=pred_probs, return_indices_ranked_by='self_confidence', )
結果 画像 4000 枚から40件の誤りを特定、修正できた 種別 枚数 割合 全画像 4000 枚
100% Confident Learning により抽出した画像 250 枚 6.25% 再レビューの結果、陽性/陰性が修正された件数 40 枚 1%
考察 アノテーションの誤りは概ね正しく抽出できていると思われる 今回のデータセットにおいて検出できた誤りは 1% 程度 これは公開されている品質の高いデータセットとほとんど同じ アノテーションの誤りを効率的に修正する手法は確立できた レビュー対象を 4,000 枚から
250 枚 (6%) に集約できた 見逃しもあると思われるため、データの収集と修正を繰り返し実施する 必要性も明らかになった
まとめ Confident Learning はラベルの誤りを発見することでデータの品質向上 に取り組むアルゴリズム ImageNet などのデータセットに対してアルゴリズムを適用することで 実際に誤りを発見 アルゴリズムを実際のデータセットに適用してみたところ、誤りを発見 し、修正できた