$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
実用 Confident Learning
Search
Asei Sugiyama
October 13, 2022
Technology
2
3.8k
実用 Confident Learning
みんなのPython勉強会#86 での発表資料です
https://speakerdeck.com/asei/confident-learning
よりも事例の紹介に注力しています
Asei Sugiyama
October 13, 2022
Tweet
Share
More Decks by Asei Sugiyama
See All by Asei Sugiyama
AI エージェント活用のベストプラクティスと今後の課題
asei
2
490
エージェントの継続的改善のためのメトリクス再考
asei
3
720
生成AI活用のベストプラクティス集を作ってる件
asei
1
840
GenAIOps: 生成AI時代の DevOps
asei
0
58
生成AI活用の実践解説 (速報版)
asei
1
1.5k
実践AIガバナンス
asei
3
990
Eval-Centric AI: Agent 開発におけるベストプラクティスの探求
asei
1
350
AI工学特論: MLOps・継続的評価
asei
11
3k
生成AIを用いるサービス開発の原則
asei
1
88
Other Decks in Technology
See All in Technology
小さな判断で育つ、大きな意思決定力 / 20251204 Takahiro Kinjo
shift_evolve
PRO
1
580
eBPFとwaruiBPF
sat
PRO
4
2.5k
バグハンター視点によるサプライチェーンの脆弱性
scgajge12
3
1k
AI駆動開発における設計思想 認知負荷を下げるフロントエンドアーキテクチャ/ 20251211 Teppei Hanai
shift_evolve
PRO
2
180
法人支出管理領域におけるソフトウェアアーキテクチャに基づいたテスト戦略の実践
ogugu9
1
210
AWS re:Invent 2025で見たGrafana最新機能の紹介
hamadakoji
0
130
re:Inventで気になったサービスを10分でいけるところまでお話しします
yama3133
1
120
大企業でもできる!ボトムアップで拡大させるプラットフォームの作り方
findy_eventslides
1
550
ブロックテーマとこれからの WordPress サイト制作 / Toyama WordPress Meetup Vol.81
torounit
0
480
Debugging Edge AI on Zephyr and Lessons Learned
iotengineer22
0
120
ログ管理の新たな可能性?CloudWatchの新機能をご紹介
ikumi_ono
1
510
EM歴1年10ヶ月のぼくがぶち当たった苦悩とこれからへ向けて
maaaato
0
270
Featured
See All Featured
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Typedesign – Prime Four
hannesfritz
42
2.9k
The Cost Of JavaScript in 2023
addyosmani
55
9.3k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Building an army of robots
kneath
306
46k
Music & Morning Musume
bryan
46
7k
KATA
mclloyd
PRO
32
15k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.4k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
GraphQLとの向き合い方2022年版
quramy
50
14k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Transcript
Confident Learning Asei Sugiyama
TOC Data-centric AI 振り返り <- Confident Learning 概要 実践 Confident
Learning
Data-centric AI 振り返り Data-centric AI Confident Learning Data Perf
Data-centric AI データの改善に着目したム ーブメント モデルよりもデータの改善 のほうが効果的という Andrew Ng の過去の経験に 基づく
2021 年 12 月に大きなワー クショップが行われた
Confident Learning ワークショップの中で紹介 された取り組みの 1 つ データセットに含まれるラ ベルの誤りを検出 詳細は後述
Data Perf ML Perf: 機械学習アルゴリ ズムのベンチマーク Data Perf: データセットのベ ンチマーク
いずれはアルゴリズム - テ スト - データセットをすべ てインクリメンタルに改善 するフレームワークを提供 するという野心的な提案
TOC Data-centric AI 振り返り Confident Learning 概要 <- 実践 Confident
Learning
Confident Learning 概要 背景 論文の内容 手法 結果 Pervasive Label Errors
in Test Sets Destabilize Machine Learning Benchmarks https://arxiv.org/abs/2103.14749
背景 Hinton が MNIST (LeCun が作成) の 誤り 1 件を見つけて喜んでいるのを
見ていた 「こんなに有名な人がこんなに喜ん でいるのならこれは価値があるので は」と思ったのがきっかけ Cleanlab: Labeled Datasets that Correct Themselves Automatically // Curtis Northcutt // MLOps Coffee Sessions #105 https://anchor.fm/mlops/episodes/Cleanlab-Labeled- Datasets-that-Correct-Themselves-Automatically--Curtis-Northcutt--MLOps-Coffee- Sessions-105-e1k777l/a-a850eq6
論文の内容 Confident Learning という 手法を提案 多クラス分類において、既 存の手法よりも効率的にラ ベルの誤りを発見 MNIST, ImageNet
などのデ ータセットにラベルの誤り を実際に発見した Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks https://arxiv.org/abs/2103.14749
手法 データセットを用いてモデ ルを訓練 & 推論 (k-fold) 推論結果に Confident Learning を適用し、誤りが
疑われるデータの一覧を作 成 Amazon Mechanical Turk で改めてアノテーション Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks https://arxiv.org/abs/2103.14749
結果: データセットの誤り率 Pervasive Label Errors in Test Sets Destabilize Machine
Learning Benchmarks https://arxiv.org/abs/2103.14749
結果: 提案のワークフローで発生する見逃し Pervasive Label Errors in Test Sets Destabilize Machine
Learning Benchmarks https://arxiv.org/abs/2103.14749
どうしようもない例 右の画像は ImageNet で tick (ダニ) とラベル付けされたもの クラウドソーシングで scorpion とラ
ベルが振り直された 実際は Solifugae (ヒヨケムシ、クモ やサソリではない)
TOC Data-centric AI 振り返り Confident Learning 概要 実践 Confident Learning
<-
背景 画像から疾病の陽性/陰性を判定する機械学習モデルを構築中 陽性/陰性の判定には高い専門性が必要なため、少数の専門家 (医療業務 従事者) が画像をアノテーション 構築したデータセットをもとに画像から陽性/陰性を判定するモデルを構 築 テストデータにおいてモデルが誤った画像について、専門家に念のため の再確認したところ、機械学習モデルの判断のほうが正しかったという
結果に
問題 構築した画像データセットに誤りがどの程度含まれているのか不明 データセットに含まれる画像が 4,000 件あり、今後も増える予定 専門家が全件チェックするのは現実的でないし、全件チェックした結果 を信用してよいのかどうかも不明
目標 1. アノテーションの結果がどの程度信用できるのか見積もること 2. データセットに含まれる誤りを効率的に修正するための手法を確立する こと
Clean Lab Confident Learning の OSS 実装 Python から利用可能 cleanlab/cleanlab
https://github.com/cleanlab/cleanlab
コード アルゴリズムはモデルの出力のみを用いるため、幅広い分類モデルを利 用可能 from cleanlab.filter import find_label_issues ordered_label_issues = find_label_issues(
labels=labels, pred_probs=pred_probs, return_indices_ranked_by='self_confidence', )
結果 画像 4000 枚から40件の誤りを特定、修正できた 種別 枚数 割合 全画像 4000 枚
100% Confident Learning により抽出した画像 250 枚 6.25% 再レビューの結果、陽性/陰性が修正された件数 40 枚 1%
考察 アノテーションの誤りは概ね正しく抽出できていると思われる 今回のデータセットにおいて検出できた誤りは 1% 程度 これは公開されている品質の高いデータセットとほとんど同じ アノテーションの誤りを効率的に修正する手法は確立できた レビュー対象を 4,000 枚から
250 枚 (6%) に集約できた 見逃しもあると思われるため、データの収集と修正を繰り返し実施する 必要性も明らかになった
まとめ Confident Learning はラベルの誤りを発見することでデータの品質向上 に取り組むアルゴリズム ImageNet などのデータセットに対してアルゴリズムを適用することで 実際に誤りを発見 アルゴリズムを実際のデータセットに適用してみたところ、誤りを発見 し、修正できた