Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Cloud Functions in Go at Mercari
Search
@babarot
July 13, 2019
Technology
9
5.8k
Cloud Functions in Go at Mercari
https://fukuoka.gocon.jp/ja/schedule/
@babarot
July 13, 2019
Tweet
Share
More Decks by @babarot
See All by @babarot
SLOをゼロからつくる
babarot
15
6k
Insert an Example of Software Engineer Here
babarot
4
1.9k
Kubernetes manifests management and operation in Mercari
babarot
27
6.9k
Testing with YAML
babarot
5
5.1k
tfnotify - Show Terraform execution plan beautifully on GitHub
babarot
5
14k
Micoservices Platform in Mercari
babarot
3
160
Terraform Ops for Microservices
babarot
16
15k
シェルスクリプトを書く技術
babarot
3
1.1k
Other Decks in Technology
See All in Technology
(機械学習システムでも) SLO から始める信頼性構築 - ゆる SRE#9 2025/02/21
daigo0927
0
210
あれは良かった、あれは苦労したB2B2C型SaaSの新規開発におけるCloud Spanner
hirohito1108
2
800
OSS構成管理ツールCMDBuildを使ったAWSリソース管理の自動化
satorufunai
0
370
Share my, our lessons from the road to re:Invent
naospon
0
110
利用終了したドメイン名の最強終活〜観測環境を育てて、分析・供養している件〜 / The Ultimate End-of-Life Preparation for Discontinued Domain Names
nttcom
2
340
一度 Expo の採用を断念したけど、 再度 Expo の導入を検討している話
ichiki1023
1
240
ESXi で仮想化した ARM 環境で LLM を動作させてみるぞ
unnowataru
0
140
Autonomous Database Serverless 技術詳細 / adb-s_technical_detail_jp
oracle4engineer
PRO
17
45k
OpenID BizDay#17 みんなの銀行による身元確認結果の活用 / 20250219-BizDay17-KYC-minna-no-ginko
oidfj
0
160
オブザーバビリティの観点でみるAWS / AWS from observability perspective
ymotongpoo
9
1.7k
エンジニアが加速させるプロダクトディスカバリー 〜最速で価値ある機能を見つける方法〜 / product discovery accelerated by engineers
rince
4
490
【詳説】コンテンツ配信 システムの複数機能 基盤への拡張
hatena
0
140
Featured
See All Featured
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.7k
Optimising Largest Contentful Paint
csswizardry
34
3.1k
Visualization
eitanlees
146
15k
Testing 201, or: Great Expectations
jmmastey
42
7.2k
GraphQLとの向き合い方2022年版
quramy
44
13k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Raft: Consensus for Rubyists
vanstee
137
6.8k
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.4k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
1k
Navigating Team Friction
lara
183
15k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Transcript
マイクロサービスの成果を可視化する @b4b4r07 (Jul 13, 2019) / Go Conference 19 Summer
in Fukuoka Cloud Functions in Go at Mercari
BABAROT / @b4b4r07 Mercari, Inc. SWE @ Microservices Platform Blog
/ tellme.tokyo
None
None
Monolith Microservices Current status Migrating ...
Monolith Microservices Current status Migrating ... Why Microservices?
https://speakerdeck.com/tcnksm/kai-fa-zhe-xiang-kefalseji-pan-wotukuru?slide=22
https://speakerdeck.com/tcnksm/kai-fa-zhe-xiang-kefalseji-pan-wotukuru?slide=22
https://speakerdeck.com/tcnksm/kai-fa-zhe-xiang-kefalseji-pan-wotukuru?slide=22
https://speakerdeck.com/tcnksm/kai-fa-zhe-xiang-kefalseji-pan-wotukuru?slide=22
https://speakerdeck.com/tcnksm/kai-fa-zhe-xiang-kefalseji-pan-wotukuru?slide=22
https://speakerdeck.com/tcnksm/kai-fa-zhe-xiang-kefalseji-pan-wotukuru?slide=22
Scaling Organization Solving Technical Issues 組織を再編し組織としてのアウトプットを 最大化するため 技術的な課題を解決するため
Scaling Organization Solving Technical Issues 組織を再編し組織としてのアウトプットを 最大化するため 技術的な課題を解決するため 果たして本当にこれらが解決されているか?
Scaling Organization Solving Technical Issues 組織を再編し組織としてのアウトプットを 最大化するため 技術的な課題を解決するため 果たして本当にこれらが解決されているか? Let's
measure!
Go ✕ Google Cloud Functions
DevStats
Agenda •Cloud Functions Go, DevStats •Cloud Functions How we use
•Cloud Functions Tips
Agenda •Cloud Functions Go, DevStats •Cloud Functions How we use
•Cloud Functions Tips
1. Cloud Functions Go, DevStats
What's DevStats?
•Datadog Dashboard •Go package for building a collector •Collectors DevStats
マイクロサービスの数やそれに関わる人数、 デプロイ数など、マイクロサービスとその 開発者に関わるさまざまなメトリクス (Developer Metrics)を可視化した Datadogのダッシュボード Datadog Dashboard
Go package for building a collector Collector(Developer Metricsとして可 視化するのに必要なデータソースから メトリクスを生成しデータストアに保存する
Cloud Function)を実装するために必要 な機能を抽象化して提供するパッケージ
Go package for building a collector Collector(Developer Metricsとして可 視化するのに必要なデータソースから メトリクスを生成しデータストアに保存する
Cloud Function)を実装するために必要 な機能を抽象化して提供するパッケージ
Collectors devstatsパッケージを使って実装された 各メトリクスの収集器のあつまり。 例えば、deploy collectorであれば、 デプロイに関する情報を収集しタグ付け、 メトリクスを作成し(producer)、 任意の データストア(Datadogなど)に送信する (exporter)。
Collectors devstatsパッケージを使って実装された 各メトリクスの収集器のあつまり。 例えば、deploy collectorであれば、 デプロイに関する情報を収集しタグ付け、 メトリクスを作成し(producer)、 任意の データストア(Datadogなど)に送信する (exporter)。
devstats project collectors data Cloud Functions
Collectors devstatsパッケージを使って実装された 各メトリクスの収集器のあつまり。 例えば、deploy collectorであれば、 デプロイに関する情報を収集しタグ付け、 メトリクスを作成し(producer)、 任意の データストア(Datadogなど)に送信する (exporter)。
devstats project collectors data 1. produce Cloud Functions
Collectors devstatsパッケージを使って実装された 各メトリクスの収集器のあつまり。 例えば、deploy collectorであれば、 デプロイに関する情報を収集しタグ付け、 メトリクスを作成し(producer)、 任意の データストア(Datadogなど)に送信する (exporter)。
devstats project collectors data 1. produce 2. export Cloud Functions
Why DevStats?
マイクロサービスの強みを活かして、 「本当に組織全体としてのAgilityが上がっているのか」 を計測することは重要である。
生産性の高い組織において開発者数とデプロイ数は比例関係にある
Agenda •Cloud Functions Go, DevStats •Cloud Functions How we use
•Cloud Functions Tips
2. Cloud Functions How we use
Event-driven serverless compute platform Cloud Functions ” ”
Event-driven serverless compute platform Cloud Functions ” ”
DC VM/Container Serverless •物理マシン •リソース •アプリケーション 技術の発展による管理・運用対象の変化 •物理マシン •リソース •アプリケーション
•物理マシン •リソース •アプリケーション
VM/Container Serverless •好きなだけ/好きなようにスケールできる •ベンダー依存がなくポータビリティがある •要件に合わせて実行環境を変更できる •実行はベアメタルほど高速に動作しないが ビルド・テスト・デプロイのサイクルを開発者 に移譲できるので高速に開発できる Containers vs
Severless •関数の呼び出しのたびに起動され課金され るのでアイドル時間のコストを抑えられる •インフラやリソースを管理しなくてよく、 コードを書くことだけに集中できる •テクノロジがブラックボックス •ベンダー依存でありロックインされる可能性 もある
Serverless Containers vs Severless •関数の呼び出しのたびに起動され課金され るのでアイドル時間のコストを抑えられる •インフラやリソースを管理しなくてよく、 コードを書くことだけに集中できる •テクノロジがブラックボックス •ベンダー依存でありロックインされる可能性
もある
Containers vs Severless •比較して語られることも多いが別物の技術 •適材適所で使うことで真価を発揮できる •今回のDevStatsではCloud Functionsを 使ったほうがいいと判断した
✕ Cloud Functions
Background function Two ways to Go HTTP function HTTPリクエストによって呼び出される関数 標準ライブラリのhttp.HandlerFunc型に従う
イベントに応答して起動される関数 e.g. Cloud Storageバケットのコンテンツが 変更されたとき
Background function Two ways to Go HTTP function HTTPリクエストによって呼び出される関数 標準ライブラリのhttp.HandlerFunc型に従う
イベントに応答して起動される関数 e.g. Cloud Storageバケットのコンテンツが 変更されたとき
HTTP function HTTP request
HTTP function
Background function Two ways to Go HTTP function HTTPリクエストによって呼び出される関数 標準ライブラリのhttp.HandlerFunc型に従う
イベントに応答して起動される関数 e.g. Cloud Storageバケットのコンテンツが 変更されたとき
Event Background function Trigger Subscribe
Event Background function Trigger Subscribe Cloud SchedulerなどでTriggerすれば 関数の定期実行ができる
Background function
Cloud Functions How we use in DevStats
Go package "devstats" Collector(Developer Metricsとして可 視化するのに必要なデータソースから メトリクスを生成しデータストアに保存する Cloud Function)を実装するために必要 な機能を抽象化して提供するパッケージ
Go package "devstats" devstatsパッケージでここをインターフェースを取り決める producer exporter
Go package "devstats"
HTTP function case
microservices-kubernetes Number of deploys Collector 1. call 2. trigger マイクロサービスごとのKubernetes
マニフェストを管理するリポジトリ
microservices-kubernetes Number of deploys Collector 1. call 2. trigger POST
/deploys HTTP request マイクロサービスごとのKubernetes マニフェストを管理するリポジトリ
microservices-kubernetes Number of deploys Collector 1. call 2. trigger POST
/deploys HTTP request マイクロサービスごとのKubernetes マニフェストを管理するリポジトリ 3. produce
microservices-kubernetes Number of deploys Collector 1. call 2. trigger POST
/deploys HTTP request マイクロサービスごとのKubernetes マニフェストを管理するリポジトリ 3. produce 4. export
microservices-kubernetes Number of deploys Collector 1. call 2. trigger POST
/deploys HTTP request マイクロサービスごとのKubernetes マニフェストを管理するリポジトリ 3. produce 4. export devstats.deploys env service corp tool kubectl
Spinnaker webhook Number of deploys Collector 1. call 2. trigger
POST /deploys HTTP request 3. produce 4. export devstats.deploys env service corp tool Kubernetesリソースを GUI経由で扱えるコンポーネント spinnaker
https://speakerdeck.com/b4b4r07/kubernetes-manifests-management-and-operation-in-mercari
Background function case
Cloud Scheduler Cloud Pub/Sub Number of developers Collector 1. message
2. trigger
Cloud Scheduler Cloud Pub/Sub Number of developers Collector 1. message
2. trigger microservices-terraform マイクロサービスごとの開発者 を定義したTerraformリポジトリ
Cloud Scheduler Cloud Pub/Sub Number of developers Collector 1. message
2. trigger microservices-terraform 3. produce マイクロサービスごとの開発者 を定義したTerraformリポジトリ
Cloud Scheduler Cloud Pub/Sub Number of developers Collector 1. message
2. trigger microservices-terraform 3. produce 4. export マイクロサービスごとの開発者 を定義したTerraformリポジトリ
Cloud Scheduler Cloud Pub/Sub Number of developers Collector 1. message
2. trigger microservices-terraform マイクロサービスごとの開発者 を定義したTerraformリポジトリ 3. produce 4. export devstats.developers env service corp
https://speakerdeck.com/b4b4r07/terraform-ops-for-microservices
Deploys per Day per Developers
devstats.deploys / Day / devstats.developers
devstats.deploys / Day / devstats.developers
Agenda •Cloud Functions Go, DevStats •Cloud Functions How we use
•Cloud Functions Tips
3. Cloud Functions Tips
•Naming policy •Limitations •Dependencies Tips
Naming policy main以外なら自由
Naming policy エントリーポイントとなる関数名も自由なので、 (w, r)のシグネチャーを持つエクスポート関数が他にもある場合、 コードを見ただけではエントリーポイントかどうか分からない...
Naming policy エントリーポイントとなる関数名も自由なので、 (w, r)のシグネチャーを持つエクスポート関数が他にもある場合、 コードを見ただけではエントリーポイントかどうか分からない...
Naming policy エントリーポイントとなる関数名も自由なので、 (w, r)のシグネチャーを持つエクスポート関数が他にもある場合、 コードを見ただけではエントリーポイントかどうか分からない... =決め打ちにすると分かりやすくなる
Naming policy ちなみに、 このスタイルはGoogle/Googlerのコードでよく見られた例
Limitations ✘ Functions が Subscribe できる Pub/Sub は同じプロジェクト
Dependencies •外部パッケージの依存関係解決にはgo mod (dep)が使える •Cloud Functionsの実行環境上でgetするのは面倒なためローカルで取得して エントリーポイントが書かれた関数コードと一緒にアップロードする
Wrap-up!
•マイクロサービスの成果を測るために DevStats という仕組み をCloud Functions ✕ Goで作った •「推測するな、計測せよ」のプラクティスはコードだけでなく アーキテクチャにも Conclusion
We're hiring! @b4b4r07