Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Os grandes desafios das implantações corporat...

Os grandes desafios das implantações corporativas de Big Data Analytics

Apresentação realizada por Diógenes Justo no Big Data Week São Paulo 2018 [http://sao-paulo.bigdataweek.com].

Diógenes tem passagens em grandes corporações como B3, Fleury e atualmente como Head de Big Data & Analytics na ViaVarejo, além da experiência como líder de professional services da Semantix, que tem em seu portfólio os principais clientes de Big Data & Analytics do Brasil e América Latina.

Nesta oportunidade será discutido como toda esta onda (que é muito legal) de machine learning, deep learning, algoritmos, novas ferramentas – open source ou não – de big data, pode ser colocada pra funcionar dentro de algo chamado organização corporativa.

Big Data Week São Paulo

October 20, 2018
Tweet

More Decks by Big Data Week São Paulo

Other Decks in Technology

Transcript

  1. Big Data & Analytics Manager, Prof. DIOGENES JUSTO Bacharel em

    Matemática, Mestre Economia Aplicada UFRGS Professor Data Science e Machine Learning FIAP e ESPM Head Big Data & Analytics, VIA VAREJO Experiências anteriores: Semantix, B3, Banco Indusval, Fleury... /bdwbrasil /bdwbrasil /bdwbrasil http://sao-paulo.bigdataweek.com/
  2. 1. Data and Platform Governance 2. Getting insigths to move

    forward 3. All Team working together 4. Further challenges ahead... TODAY CHALLENGES
  3. 1. DATA AND PLATFORM GOVERNANCE • Needs to process adoption

    • Mindset changing to data driven • Growning maturity in data usage • Aproximating technology and analytic team
  4. 2. GETTING INSIGTHS TO MOVE FORWARD • We don’t know

    what we can reach • Deep business understanding needs • Deep understanding in business potential impacts • Think about business disruption and improvements • Mindset changing to data-driven
  5. 3. ALL TEAM WORKING TOGETHER • Knowledge transfer is a

    need: • D.S./M.L. <> Business • Data projects is not about setting up a scope... • Keeping up-to-date on innovations • Mindset changing to data driven
  6. 4. FURTHER CHALLENGES AHEAD... • Automated ML/DS models to production

    • Training models with not only historical data • Keeping closer to public data • Data governance and security