Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
qeMLパッケージの紹介
Search
bob3bob3
December 15, 2023
Science
0
2.1k
qeMLパッケージの紹介
caretやtidymodelsと同じような機械学習のラッパーqeMLパッケージの紹介
bob3bob3
December 15, 2023
Tweet
Share
More Decks by bob3bob3
See All by bob3bob3
RとLLMで自然言語処理
bob3bob3
3
630
RでPSM分析
bob3bob3
1
300
Rでコンジョイント分析 2024年版
bob3bob3
0
1.5k
『改訂新版前処理大全』の話と Apache Parquet の話 #TokyoR
bob3bob3
0
1.2k
R言語の環境構築と基礎 Tokyo.R 112
bob3bob3
0
590
『データ可視化学入門』をPythonからRに翻訳した話(増強版)
bob3bob3
0
520
『データ可視化学入門』を PythonからRに翻訳した話
bob3bob3
1
600
「国と音楽」 ~spotifyrを用いて~ #muana
bob3bob3
2
590
パーマーステーションのペンギンたち#3 探索的データ分析(EDA)編
bob3bob3
1
750
Other Decks in Science
See All in Science
SciPyDataJapan 2025
schwalbe10
0
260
Machine Learning for Materials (Challenge)
aronwalsh
0
320
Ignite の1年間の軌跡
ktombow
0
140
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.2k
機械学習 - DBSCAN
trycycle
PRO
0
1k
オンプレミス環境にKubernetesを構築する
koukimiura
0
330
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
1
110
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
11
2.3k
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
160
KH Coderチュートリアル(スライド版)
koichih
1
45k
高校生就活へのDA導入の提案
shunyanoda
0
5.9k
機械学習 - 授業概要
trycycle
PRO
0
230
Featured
See All Featured
GitHub's CSS Performance
jonrohan
1032
460k
Thoughts on Productivity
jonyablonski
69
4.8k
Become a Pro
speakerdeck
PRO
29
5.5k
Writing Fast Ruby
sferik
628
62k
Documentation Writing (for coders)
carmenintech
73
5k
Producing Creativity
orderedlist
PRO
347
40k
It's Worth the Effort
3n
187
28k
For a Future-Friendly Web
brad_frost
179
9.9k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Building an army of robots
kneath
306
46k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
490
Agile that works and the tools we love
rasmusluckow
330
21k
Transcript
qeMLパッケージの紹介 R研究集会2023 (2023/12/16) @bob3bob3
qeMLパッケージとは? • caret、mlr3、tidymodelsと同じような、機械 学習に統一的なインターフェイスを提供する ラッパー。 • 「qe」は「quick and easy」。 •
とにかくシンプルで「 one liner」で機械学習を 事項できるのが売り。
作者 Norman Matloff The Art of R Programming (2011) の著者。
実行例 library(qeML) # メジャーリーガーのデータセット。ポジション、身長、体重、年齢 data(mlb1) # 体重を推定するモデル # 決定木、ランダムフォレスト、勾配ブースティング mlb1_rpart
<- mlb1 |> qeRpart("Weight") mlb1_rf <- mlb1 |> qeRFranger("Weight") mlb1_gb <- mlb1 |> qeGBoost("Weight")
実行例 # 推定 new_data <- data.frame(Position='Catcher', Height=73, Age=28) mlb1_rpart |>
predict(new_data) mlb1_rf |> predict(new_data) mlb1_gb |> predict(new_data) # これだけ! # 簡単だね!
Enjoy?
いやいや、まてまて • バリデーションは? • ハイパーパラメーターのチューニングは?
バリデーションは勝手にやってくれる # testデータでのMAE mlb1_rpart$testAcc mlb1_rf$testAcc mlb1_gb$testAcc data.frame( name = c("rpart",
"rf", "gb"), MAE = list(mlb1_rpart, mlb1_rf, mlb1_gb) |> map_dbl(\(x) pluck(x, "testAcc")) ) |> arrange(MAE) # name MAE # 1 rf 13.23741 # 2 gb 13.74169 # 3 rpart 14.24358
チューニングもできる # ランダムフォレストのグリッドサーチ例 qs_ft_rf <- mlb1 |> qeFT( "Weight", "qeRFranger",
pars = list(nTree= seq(100, 1000, 250), minNodeSize= seq(10, 30, 10)), nTst = 100, nXval = 10, showProgress=TRUE ) qs_ft_rf$outdf |> slice_min(meanAcc) # nTree minNodeSize meanAcc CI bonfCI # 1 350 10 8.326976 8.531146 8.653432
その他の機能 • 次元縮約、次元削減 • 並列化 • 欠損補完 • モデルの比較 •
Quick Start, ML Overviewなど親切なビネットがたくさん! • データセットも山盛り
……ただし • まだまだ開発中で発展途上。 • ドキュメントも書きかけという感じ。 • 実装されている手法がcaret、tidymodelsと比べるとまだ少ない。 • 実装が不完全な手法もある(xgboost, lightgbmなど)
• バリデーションの評価指標を変更ができない • Macだとインストールできないらしい(誰か検証して!)
Enjoy!