Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
qeMLパッケージの紹介
Search
bob3bob3
December 15, 2023
Science
0
2.3k
qeMLパッケージの紹介
caretやtidymodelsと同じような機械学習のラッパーqeMLパッケージの紹介
bob3bob3
December 15, 2023
Tweet
Share
More Decks by bob3bob3
See All by bob3bob3
RとLLMで自然言語処理
bob3bob3
3
760
RでPSM分析
bob3bob3
1
360
Rでコンジョイント分析 2024年版
bob3bob3
0
2k
『改訂新版前処理大全』の話と Apache Parquet の話 #TokyoR
bob3bob3
0
1.3k
R言語の環境構築と基礎 Tokyo.R 112
bob3bob3
0
620
『データ可視化学入門』をPythonからRに翻訳した話(増強版)
bob3bob3
0
550
『データ可視化学入門』を PythonからRに翻訳した話
bob3bob3
1
620
「国と音楽」 ~spotifyrを用いて~ #muana
bob3bob3
2
610
パーマーステーションのペンギンたち#3 探索的データ分析(EDA)編
bob3bob3
1
790
Other Decks in Science
See All in Science
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
460
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.2k
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
130
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
910
白金鉱業Vol.21【初学者向け発表枠】身近な例から学ぶ数理最適化の基礎 / Learning the Basics of Mathematical Optimization Through Everyday Examples
brainpadpr
1
480
次代のデータサイエンティストへ~スキルチェックリスト、タスクリスト更新~
datascientistsociety
PRO
2
21k
あなたに水耕栽培を愛していないとは言わせない
mutsumix
1
140
MCMCのR-hatは分散分析である
moricup
0
540
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
440
データマイニング - ノードの中心性
trycycle
PRO
0
320
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
160
白金鉱業Meetup_Vol.20 効果検証ことはじめ / Introduction to Impact Evaluation
brainpadpr
2
1.5k
Featured
See All Featured
Code Reviewing Like a Champion
maltzj
527
40k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
37
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
RailsConf 2023
tenderlove
30
1.3k
Leo the Paperboy
mayatellez
0
1.3k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Navigating Weather and Climate Data
rabernat
0
51
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
290
Transcript
qeMLパッケージの紹介 R研究集会2023 (2023/12/16) @bob3bob3
qeMLパッケージとは? • caret、mlr3、tidymodelsと同じような、機械 学習に統一的なインターフェイスを提供する ラッパー。 • 「qe」は「quick and easy」。 •
とにかくシンプルで「 one liner」で機械学習を 事項できるのが売り。
作者 Norman Matloff The Art of R Programming (2011) の著者。
実行例 library(qeML) # メジャーリーガーのデータセット。ポジション、身長、体重、年齢 data(mlb1) # 体重を推定するモデル # 決定木、ランダムフォレスト、勾配ブースティング mlb1_rpart
<- mlb1 |> qeRpart("Weight") mlb1_rf <- mlb1 |> qeRFranger("Weight") mlb1_gb <- mlb1 |> qeGBoost("Weight")
実行例 # 推定 new_data <- data.frame(Position='Catcher', Height=73, Age=28) mlb1_rpart |>
predict(new_data) mlb1_rf |> predict(new_data) mlb1_gb |> predict(new_data) # これだけ! # 簡単だね!
Enjoy?
いやいや、まてまて • バリデーションは? • ハイパーパラメーターのチューニングは?
バリデーションは勝手にやってくれる # testデータでのMAE mlb1_rpart$testAcc mlb1_rf$testAcc mlb1_gb$testAcc data.frame( name = c("rpart",
"rf", "gb"), MAE = list(mlb1_rpart, mlb1_rf, mlb1_gb) |> map_dbl(\(x) pluck(x, "testAcc")) ) |> arrange(MAE) # name MAE # 1 rf 13.23741 # 2 gb 13.74169 # 3 rpart 14.24358
チューニングもできる # ランダムフォレストのグリッドサーチ例 qs_ft_rf <- mlb1 |> qeFT( "Weight", "qeRFranger",
pars = list(nTree= seq(100, 1000, 250), minNodeSize= seq(10, 30, 10)), nTst = 100, nXval = 10, showProgress=TRUE ) qs_ft_rf$outdf |> slice_min(meanAcc) # nTree minNodeSize meanAcc CI bonfCI # 1 350 10 8.326976 8.531146 8.653432
その他の機能 • 次元縮約、次元削減 • 並列化 • 欠損補完 • モデルの比較 •
Quick Start, ML Overviewなど親切なビネットがたくさん! • データセットも山盛り
……ただし • まだまだ開発中で発展途上。 • ドキュメントも書きかけという感じ。 • 実装されている手法がcaret、tidymodelsと比べるとまだ少ない。 • 実装が不完全な手法もある(xgboost, lightgbmなど)
• バリデーションの評価指標を変更ができない • Macだとインストールできないらしい(誰か検証して!)
Enjoy!