Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
qeMLパッケージの紹介
Search
bob3bob3
December 15, 2023
Science
0
2.3k
qeMLパッケージの紹介
caretやtidymodelsと同じような機械学習のラッパーqeMLパッケージの紹介
bob3bob3
December 15, 2023
Tweet
Share
More Decks by bob3bob3
See All by bob3bob3
RとLLMで自然言語処理
bob3bob3
3
740
RでPSM分析
bob3bob3
1
340
Rでコンジョイント分析 2024年版
bob3bob3
0
1.9k
『改訂新版前処理大全』の話と Apache Parquet の話 #TokyoR
bob3bob3
0
1.3k
R言語の環境構築と基礎 Tokyo.R 112
bob3bob3
0
620
『データ可視化学入門』をPythonからRに翻訳した話(増強版)
bob3bob3
0
550
『データ可視化学入門』を PythonからRに翻訳した話
bob3bob3
1
620
「国と音楽」 ~spotifyrを用いて~ #muana
bob3bob3
2
610
パーマーステーションのペンギンたち#3 探索的データ分析(EDA)編
bob3bob3
1
790
Other Decks in Science
See All in Science
【論文紹介】Is CLIP ideal? No. Can we fix it?Yes! 第65回 コンピュータビジョン勉強会@関東
shun6211
5
2.1k
サイコロで理解する原子核崩壊と拡散現象 〜単純化されたモデルで本質を理解する〜
syotasasaki593876
0
130
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
160
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
1k
学術講演会中央大学学員会府中支部
tagtag
0
330
HajimetenoLT vol.17
hashimoto_kei
1
110
凸最適化からDC最適化まで
santana_hammer
1
340
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
240
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
560
mOrganic™ Holdings, LLC.
hyperlocalnetwork
0
210
機械学習 - DBSCAN
trycycle
PRO
0
1.3k
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
130
Featured
See All Featured
Embracing the Ebb and Flow
colly
88
4.9k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.6k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
KATA
mclloyd
PRO
32
15k
Making Projects Easy
brettharned
120
6.5k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Transcript
qeMLパッケージの紹介 R研究集会2023 (2023/12/16) @bob3bob3
qeMLパッケージとは? • caret、mlr3、tidymodelsと同じような、機械 学習に統一的なインターフェイスを提供する ラッパー。 • 「qe」は「quick and easy」。 •
とにかくシンプルで「 one liner」で機械学習を 事項できるのが売り。
作者 Norman Matloff The Art of R Programming (2011) の著者。
実行例 library(qeML) # メジャーリーガーのデータセット。ポジション、身長、体重、年齢 data(mlb1) # 体重を推定するモデル # 決定木、ランダムフォレスト、勾配ブースティング mlb1_rpart
<- mlb1 |> qeRpart("Weight") mlb1_rf <- mlb1 |> qeRFranger("Weight") mlb1_gb <- mlb1 |> qeGBoost("Weight")
実行例 # 推定 new_data <- data.frame(Position='Catcher', Height=73, Age=28) mlb1_rpart |>
predict(new_data) mlb1_rf |> predict(new_data) mlb1_gb |> predict(new_data) # これだけ! # 簡単だね!
Enjoy?
いやいや、まてまて • バリデーションは? • ハイパーパラメーターのチューニングは?
バリデーションは勝手にやってくれる # testデータでのMAE mlb1_rpart$testAcc mlb1_rf$testAcc mlb1_gb$testAcc data.frame( name = c("rpart",
"rf", "gb"), MAE = list(mlb1_rpart, mlb1_rf, mlb1_gb) |> map_dbl(\(x) pluck(x, "testAcc")) ) |> arrange(MAE) # name MAE # 1 rf 13.23741 # 2 gb 13.74169 # 3 rpart 14.24358
チューニングもできる # ランダムフォレストのグリッドサーチ例 qs_ft_rf <- mlb1 |> qeFT( "Weight", "qeRFranger",
pars = list(nTree= seq(100, 1000, 250), minNodeSize= seq(10, 30, 10)), nTst = 100, nXval = 10, showProgress=TRUE ) qs_ft_rf$outdf |> slice_min(meanAcc) # nTree minNodeSize meanAcc CI bonfCI # 1 350 10 8.326976 8.531146 8.653432
その他の機能 • 次元縮約、次元削減 • 並列化 • 欠損補完 • モデルの比較 •
Quick Start, ML Overviewなど親切なビネットがたくさん! • データセットも山盛り
……ただし • まだまだ開発中で発展途上。 • ドキュメントも書きかけという感じ。 • 実装されている手法がcaret、tidymodelsと比べるとまだ少ない。 • 実装が不完全な手法もある(xgboost, lightgbmなど)
• バリデーションの評価指標を変更ができない • Macだとインストールできないらしい(誰か検証して!)
Enjoy!