$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
qeMLパッケージの紹介
Search
bob3bob3
December 15, 2023
Science
0
2.3k
qeMLパッケージの紹介
caretやtidymodelsと同じような機械学習のラッパーqeMLパッケージの紹介
bob3bob3
December 15, 2023
Tweet
Share
More Decks by bob3bob3
See All by bob3bob3
RとLLMで自然言語処理
bob3bob3
3
750
RでPSM分析
bob3bob3
1
340
Rでコンジョイント分析 2024年版
bob3bob3
0
1.9k
『改訂新版前処理大全』の話と Apache Parquet の話 #TokyoR
bob3bob3
0
1.3k
R言語の環境構築と基礎 Tokyo.R 112
bob3bob3
0
620
『データ可視化学入門』をPythonからRに翻訳した話(増強版)
bob3bob3
0
550
『データ可視化学入門』を PythonからRに翻訳した話
bob3bob3
1
620
「国と音楽」 ~spotifyrを用いて~ #muana
bob3bob3
2
610
パーマーステーションのペンギンたち#3 探索的データ分析(EDA)編
bob3bob3
1
790
Other Decks in Science
See All in Science
Lean4による汎化誤差評価の形式化
milano0017
1
390
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
130
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
0
120
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
170
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
1k
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
20251212_LT忘年会_データサイエンス枠_新川.pdf
shinpsan
0
170
サイコロで理解する原子核崩壊と拡散現象 〜単純化されたモデルで本質を理解する〜
syotasasaki593876
0
130
風の力で振れ幅が大きくなる振り子!? 〜タコマナローズ橋はなぜ落ちたのか〜
syotasasaki593876
1
170
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
860
【論文紹介】Is CLIP ideal? No. Can we fix it?Yes! 第65回 コンピュータビジョン勉強会@関東
shun6211
5
2.1k
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
900
Featured
See All Featured
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
75
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
130
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
400
The Limits of Empathy - UXLibs8
cassininazir
1
190
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
64
35k
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
29
KATA
mclloyd
PRO
33
15k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
46
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.3k
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandezseo
0
83
Transcript
qeMLパッケージの紹介 R研究集会2023 (2023/12/16) @bob3bob3
qeMLパッケージとは? • caret、mlr3、tidymodelsと同じような、機械 学習に統一的なインターフェイスを提供する ラッパー。 • 「qe」は「quick and easy」。 •
とにかくシンプルで「 one liner」で機械学習を 事項できるのが売り。
作者 Norman Matloff The Art of R Programming (2011) の著者。
実行例 library(qeML) # メジャーリーガーのデータセット。ポジション、身長、体重、年齢 data(mlb1) # 体重を推定するモデル # 決定木、ランダムフォレスト、勾配ブースティング mlb1_rpart
<- mlb1 |> qeRpart("Weight") mlb1_rf <- mlb1 |> qeRFranger("Weight") mlb1_gb <- mlb1 |> qeGBoost("Weight")
実行例 # 推定 new_data <- data.frame(Position='Catcher', Height=73, Age=28) mlb1_rpart |>
predict(new_data) mlb1_rf |> predict(new_data) mlb1_gb |> predict(new_data) # これだけ! # 簡単だね!
Enjoy?
いやいや、まてまて • バリデーションは? • ハイパーパラメーターのチューニングは?
バリデーションは勝手にやってくれる # testデータでのMAE mlb1_rpart$testAcc mlb1_rf$testAcc mlb1_gb$testAcc data.frame( name = c("rpart",
"rf", "gb"), MAE = list(mlb1_rpart, mlb1_rf, mlb1_gb) |> map_dbl(\(x) pluck(x, "testAcc")) ) |> arrange(MAE) # name MAE # 1 rf 13.23741 # 2 gb 13.74169 # 3 rpart 14.24358
チューニングもできる # ランダムフォレストのグリッドサーチ例 qs_ft_rf <- mlb1 |> qeFT( "Weight", "qeRFranger",
pars = list(nTree= seq(100, 1000, 250), minNodeSize= seq(10, 30, 10)), nTst = 100, nXval = 10, showProgress=TRUE ) qs_ft_rf$outdf |> slice_min(meanAcc) # nTree minNodeSize meanAcc CI bonfCI # 1 350 10 8.326976 8.531146 8.653432
その他の機能 • 次元縮約、次元削減 • 並列化 • 欠損補完 • モデルの比較 •
Quick Start, ML Overviewなど親切なビネットがたくさん! • データセットも山盛り
……ただし • まだまだ開発中で発展途上。 • ドキュメントも書きかけという感じ。 • 実装されている手法がcaret、tidymodelsと比べるとまだ少ない。 • 実装が不完全な手法もある(xgboost, lightgbmなど)
• バリデーションの評価指標を変更ができない • Macだとインストールできないらしい(誰か検証して!)
Enjoy!