Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
qeMLパッケージの紹介
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
bob3bob3
December 15, 2023
Science
0
2.3k
qeMLパッケージの紹介
caretやtidymodelsと同じような機械学習のラッパーqeMLパッケージの紹介
bob3bob3
December 15, 2023
Tweet
Share
More Decks by bob3bob3
See All by bob3bob3
RとLLMで自然言語処理
bob3bob3
3
780
RでPSM分析
bob3bob3
1
400
Rでコンジョイント分析 2024年版
bob3bob3
0
2.1k
『改訂新版前処理大全』の話と Apache Parquet の話 #TokyoR
bob3bob3
0
1.3k
R言語の環境構築と基礎 Tokyo.R 112
bob3bob3
0
620
『データ可視化学入門』をPythonからRに翻訳した話(増強版)
bob3bob3
0
560
『データ可視化学入門』を PythonからRに翻訳した話
bob3bob3
1
620
「国と音楽」 ~spotifyrを用いて~ #muana
bob3bob3
2
620
パーマーステーションのペンギンたち#3 探索的データ分析(EDA)編
bob3bob3
1
800
Other Decks in Science
See All in Science
機械学習 - SVM
trycycle
PRO
1
970
先端因果推論特別研究チームの研究構想と 人間とAIが協働する自律因果探索の展望
sshimizu2006
3
750
サイコロで理解する原子核崩壊と拡散現象 〜単純化されたモデルで本質を理解する〜
syotasasaki593876
0
140
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
710
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
250
DMMにおけるABテスト検証設計の工夫
xc6da
1
1.5k
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
920
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
180
次代のデータサイエンティストへ~スキルチェックリスト、タスクリスト更新~
datascientistsociety
PRO
2
25k
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
260
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
430
NDCG is NOT All I Need
statditto
2
2.7k
Featured
See All Featured
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
61
49k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Documentation Writing (for coders)
carmenintech
77
5.2k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
800
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
430
ラッコキーワード サービス紹介資料
rakko
1
2.1M
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
1
47
Skip the Path - Find Your Career Trail
mkilby
0
45
From π to Pie charts
rasagy
0
120
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
120
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.7k
Transcript
qeMLパッケージの紹介 R研究集会2023 (2023/12/16) @bob3bob3
qeMLパッケージとは? • caret、mlr3、tidymodelsと同じような、機械 学習に統一的なインターフェイスを提供する ラッパー。 • 「qe」は「quick and easy」。 •
とにかくシンプルで「 one liner」で機械学習を 事項できるのが売り。
作者 Norman Matloff The Art of R Programming (2011) の著者。
実行例 library(qeML) # メジャーリーガーのデータセット。ポジション、身長、体重、年齢 data(mlb1) # 体重を推定するモデル # 決定木、ランダムフォレスト、勾配ブースティング mlb1_rpart
<- mlb1 |> qeRpart("Weight") mlb1_rf <- mlb1 |> qeRFranger("Weight") mlb1_gb <- mlb1 |> qeGBoost("Weight")
実行例 # 推定 new_data <- data.frame(Position='Catcher', Height=73, Age=28) mlb1_rpart |>
predict(new_data) mlb1_rf |> predict(new_data) mlb1_gb |> predict(new_data) # これだけ! # 簡単だね!
Enjoy?
いやいや、まてまて • バリデーションは? • ハイパーパラメーターのチューニングは?
バリデーションは勝手にやってくれる # testデータでのMAE mlb1_rpart$testAcc mlb1_rf$testAcc mlb1_gb$testAcc data.frame( name = c("rpart",
"rf", "gb"), MAE = list(mlb1_rpart, mlb1_rf, mlb1_gb) |> map_dbl(\(x) pluck(x, "testAcc")) ) |> arrange(MAE) # name MAE # 1 rf 13.23741 # 2 gb 13.74169 # 3 rpart 14.24358
チューニングもできる # ランダムフォレストのグリッドサーチ例 qs_ft_rf <- mlb1 |> qeFT( "Weight", "qeRFranger",
pars = list(nTree= seq(100, 1000, 250), minNodeSize= seq(10, 30, 10)), nTst = 100, nXval = 10, showProgress=TRUE ) qs_ft_rf$outdf |> slice_min(meanAcc) # nTree minNodeSize meanAcc CI bonfCI # 1 350 10 8.326976 8.531146 8.653432
その他の機能 • 次元縮約、次元削減 • 並列化 • 欠損補完 • モデルの比較 •
Quick Start, ML Overviewなど親切なビネットがたくさん! • データセットも山盛り
……ただし • まだまだ開発中で発展途上。 • ドキュメントも書きかけという感じ。 • 実装されている手法がcaret、tidymodelsと比べるとまだ少ない。 • 実装が不完全な手法もある(xgboost, lightgbmなど)
• バリデーションの評価指標を変更ができない • Macだとインストールできないらしい(誰か検証して!)
Enjoy!