Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
「国と音楽」 ~spotifyrを用いて~ #muana
Search
bob3bob3
October 28, 2023
Science
2
620
「国と音楽」 ~spotifyrを用いて~ #muana
SpotifyのWebAPIから取得できるデータを使い、国ごとに流行っている曲の傾向やグループ分けを行ってみた。
#muana #R言語 #rstats
bob3bob3
October 28, 2023
Tweet
Share
More Decks by bob3bob3
See All by bob3bob3
RとLLMで自然言語処理
bob3bob3
3
770
RでPSM分析
bob3bob3
1
400
Rでコンジョイント分析 2024年版
bob3bob3
0
2k
『改訂新版前処理大全』の話と Apache Parquet の話 #TokyoR
bob3bob3
0
1.3k
R言語の環境構築と基礎 Tokyo.R 112
bob3bob3
0
620
『データ可視化学入門』をPythonからRに翻訳した話(増強版)
bob3bob3
0
560
『データ可視化学入門』を PythonからRに翻訳した話
bob3bob3
1
620
qeMLパッケージの紹介
bob3bob3
0
2.3k
パーマーステーションのペンギンたち#3 探索的データ分析(EDA)編
bob3bob3
1
800
Other Decks in Science
See All in Science
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
300
良書紹介04_生命科学の実験デザイン
bunnchinn3
0
110
Distributional Regression
tackyas
0
250
2025-05-31-pycon_italia
sofievl
0
130
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
1.1k
白金鉱業Vol.21【初学者向け発表枠】身近な例から学ぶ数理最適化の基礎 / Learning the Basics of Mathematical Optimization Through Everyday Examples
brainpadpr
1
510
2025-06-11-ai_belgium
sofievl
1
220
風の力で振れ幅が大きくなる振り子!? 〜タコマナローズ橋はなぜ落ちたのか〜
syotasasaki593876
1
190
コミュニティサイエンスの実践@日本認知科学会2025
hayataka88
0
110
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
rudorudo11
0
170
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
240
My Little Monster
juzishuu
0
400
Featured
See All Featured
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
210
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
420
Automating Front-end Workflow
addyosmani
1371
200k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
110
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
2
77
Six Lessons from altMBA
skipperchong
29
4.1k
Speed Design
sergeychernyshev
33
1.5k
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
360
Transcript
音楽と国 ~spotifyrを用いて~ Music×Analytics Meetup Vol.11 (2023/10/28) @bob3bob3
Spotify
Spotifyとは? Spotify(スポティファイ)は、スウェーデンの 企業スポティファイ・テクノロジーによって運 営されている音楽ストリーミングサービス。 (Wikipediaより引用)
spotifyr • R言語のspotifyrパッケージを使って、SpotifyのWeb APIから楽曲や アルバム、アーティストなどの情報を一括で取得。 • spotifyrで取得できる情報の一例 ◦ アルバム単位 ▪
ジャケット画像、曲数、アルバム名、リリース日、人気度など ◦ アーティスト単位 ▪ ジャンル、関連するアーティスト、人気度など ◦ 楽曲単位 ▪ アコースティック度、ダンス度、インスト度、音圧、テンポ、キー、人気度な ど ◦ 詳しくはspotifyのwebAPIのページを参照のこと。
プレイリスト • Spotifyにはプレイリストという機能が あります。好きな曲をまとめて公開す る機能です。 • Spotify公式のプレイリストもあって、 例えば各国のTop50がプレイリストと して公開されていたりします。 •
これもspotifyrで扱えて、プレイリスト ごとに含まれる楽曲のデータなどを抽 出できます。
やってみよう! • 「各国のTop50のプレイリストから、 含まれる楽曲を抽出し、各楽曲の 特徴を用いて各国をクラスタリング する。」というのをやってみます。 • 事前準備としてSpotifyのアカウント と開発者アカウントの登録が必要で す。
• 2023年07月14日時点のデータで す。
# パッケージ読み込み library(conflicted) #関数の衝突防止 library(tidyverse) #モダンなデータ処理 library(spotifyr) #Spotifyの Web API
操作 # 開発者アカウント認証 Sys.setenv(SPOTIFY_CLIENT_ID = 'xxxxxxxxxx') Sys.setenv(SPOTIFY_CLIENT_SECRET = 'xxxxxxxxxx') access_token <- get_spotify_access_token() 準備
# プレイリスト検索 res_search <- search_spotify( q = 'top50', type =
'playlist', limit = 50 ) |> dplyr::filter(owner.id == "spotify") |> #公式プレイリストに絞る select(name, id) |> #列を絞る mutate(name = name |> str_remove("Top 50 - ")) |> #プレイリスト名の整形 dplyr::filter( #ノイズになる行を削除 !(name %in% c("Global", "Greatest Hip-Hop Beats of All Time")) ) |> rowid_to_column() #ID番号を振る Top50のプレイリストを検索
検索結果 国名とプレイリストの id。
playlists_tracks <- res_search |> pull(id) |> map( #各プレイリストに含まれる楽曲を抽出 \(id) get_playlist_tracks(id)
|> select(track.id, track.name), .progress = TRUE ) |> list_rbind(names_to = "rowid") Top50のプレイリストから各楽曲のIDを検索
プレイリストに含まれる楽曲のリスト
各楽曲の分析情報を取得 res_track <- playlists_tracks |> pull(track.id) |> unique() |> map(
\(track.id) get_track_audio_features(track.id), .progress = TRUE ) |> list_rbind() |> right_join( playlists_tracks |> left_join(res_search, by = join_by(rowid)), by = join_by(id == track.id) ) |> mutate( duration_s = duration_ms / 1000, # ミリ秒を秒に country = as.factor(name) ) |> select( country, duration_s, energy, acousticness, liveness, speechiness, valence, danceability, tempo, id, track.name)
各楽曲の分析情報を取得
各楽曲の分析情報を取得 • duration_ms: 曲の長さ(ミリ秒) • energy: 0~1。騒がしい曲か静かな曲か。 • acousticness: アコースティック度合。電気的に増幅されている程度。
• liveness: 0~1。ライブ音源かスタジオ音源か。 • speechiness: 0~1。歌ではない話し言葉の量。 • valence: 0~1。ポジティブさ。 • danceability: 0~1。踊りやすさ。 • tempo: テンポ(BPM)。
各楽曲の分析情報
分析情報に関する発表事例
EDA library(summarytools) res_track |> select(!c(country, id, track.name)) |> dfSummary() |>
summarytools::view()
EDA library(GGally) res_track |> select(!c(country, id, track.name)) |> ggpairs(aes(alpha =
0.1))
国ごとの違い res_track2 |> ggplot( aes( x = reorder( country, duration_s,
FUN = median), y = duration_s)) + geom_boxplot() + coord_flip() + labs(x = "国", y = "演奏時間(秒)") + theme(text = element_text(size = 12))
クラスタリングしよう! # 国ごとに中央値を算出し、さらに標準化する median_by_country <- res_track |> select(!c(id, track.name)) |>
group_by(country, .drop = FALSE) |> summarise(across(everything(), median)) |> column_to_rownames(var = "country") |> scale() # 階層型クラスタリング library(factoextra) library(dendextend) cluster_tree <- median_by_country |> dist() |> hclust(method = "ward.D2") cluster_tree |> fviz_dend( k=6, cex=0.5, horiz = TRUE, label_cols = "black", k_colors = c( "#ff4b00", "#990099", "#03af7a", "#005aff", "#804000", "#ff8082"), rect = TRUE, rect_fill = TRUE, rect_border = 8 )
地図! clusters <- tibble( country = median_by_country |> rownames(), cluster
= cluster_tree |> cutree(k=6) ) library(ggrepel) library(sf) library(rnaturalearth) world_map <- ne_countries( scale = "small", returnclass = "sf" ) |> left_join( clusters |> mutate( country = country |> str_replace("USA", "United States") |> str_replace("South Korea", "Republic of Korea") ), by=join_by(name_long == country) ) world_map |> ggplot() + geom_sf(aes(fill = as.factor(cluster))) + theme_light() + labs(fill = "cluster") + scale_colour_brewer(palette = "Dark2")
None
Enjoy! 次回「2010年代 King Crimson のセットリスト分析」でお会いしま しょう!