Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
「国と音楽」 ~spotifyrを用いて~ #muana
Search
bob3bob3
October 28, 2023
Science
2
580
「国と音楽」 ~spotifyrを用いて~ #muana
SpotifyのWebAPIから取得できるデータを使い、国ごとに流行っている曲の傾向やグループ分けを行ってみた。
#muana #R言語 #rstats
bob3bob3
October 28, 2023
Tweet
Share
More Decks by bob3bob3
See All by bob3bob3
RとLLMで自然言語処理
bob3bob3
3
600
RでPSM分析
bob3bob3
1
290
Rでコンジョイント分析 2024年版
bob3bob3
0
1.4k
『改訂新版前処理大全』の話と Apache Parquet の話 #TokyoR
bob3bob3
0
1.2k
R言語の環境構築と基礎 Tokyo.R 112
bob3bob3
0
580
『データ可視化学入門』をPythonからRに翻訳した話(増強版)
bob3bob3
0
510
『データ可視化学入門』を PythonからRに翻訳した話
bob3bob3
1
600
qeMLパッケージの紹介
bob3bob3
0
2.1k
パーマーステーションのペンギンたち#3 探索的データ分析(EDA)編
bob3bob3
1
740
Other Decks in Science
See All in Science
機械学習 - SVM
trycycle
PRO
1
870
Transport information Geometry: Current and Future II
lwc2017
0
170
Symfony Console Facelift
chalasr
2
460
システム数理と応用分野の未来を切り拓くロードマップ・エンターテインメント(スポーツ)への応用 / Applied mathematics for sports entertainment
konakalab
1
360
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
410
3次元点群を利用した植物の葉の自動セグメンテーションについて
kentaitakura
2
1.3k
データマイニング - ウェブとグラフ
trycycle
PRO
0
140
Accelerated Computing for Climate forecast
inureyes
PRO
0
110
アナログ計算機『計算尺』を愛でる Midosuji Tech #4/Analog Computing Device Slide Rule now and then
quiver
1
220
Lean4による汎化誤差評価の形式化
milano0017
1
280
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
290
データベース03: 関係データモデル
trycycle
PRO
1
240
Featured
See All Featured
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Typedesign – Prime Four
hannesfritz
42
2.7k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Code Reviewing Like a Champion
maltzj
524
40k
How GitHub (no longer) Works
holman
314
140k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.6k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Unsuck your backbone
ammeep
671
58k
Transcript
音楽と国 ~spotifyrを用いて~ Music×Analytics Meetup Vol.11 (2023/10/28) @bob3bob3
Spotify
Spotifyとは? Spotify(スポティファイ)は、スウェーデンの 企業スポティファイ・テクノロジーによって運 営されている音楽ストリーミングサービス。 (Wikipediaより引用)
spotifyr • R言語のspotifyrパッケージを使って、SpotifyのWeb APIから楽曲や アルバム、アーティストなどの情報を一括で取得。 • spotifyrで取得できる情報の一例 ◦ アルバム単位 ▪
ジャケット画像、曲数、アルバム名、リリース日、人気度など ◦ アーティスト単位 ▪ ジャンル、関連するアーティスト、人気度など ◦ 楽曲単位 ▪ アコースティック度、ダンス度、インスト度、音圧、テンポ、キー、人気度な ど ◦ 詳しくはspotifyのwebAPIのページを参照のこと。
プレイリスト • Spotifyにはプレイリストという機能が あります。好きな曲をまとめて公開す る機能です。 • Spotify公式のプレイリストもあって、 例えば各国のTop50がプレイリストと して公開されていたりします。 •
これもspotifyrで扱えて、プレイリスト ごとに含まれる楽曲のデータなどを抽 出できます。
やってみよう! • 「各国のTop50のプレイリストから、 含まれる楽曲を抽出し、各楽曲の 特徴を用いて各国をクラスタリング する。」というのをやってみます。 • 事前準備としてSpotifyのアカウント と開発者アカウントの登録が必要で す。
• 2023年07月14日時点のデータで す。
# パッケージ読み込み library(conflicted) #関数の衝突防止 library(tidyverse) #モダンなデータ処理 library(spotifyr) #Spotifyの Web API
操作 # 開発者アカウント認証 Sys.setenv(SPOTIFY_CLIENT_ID = 'xxxxxxxxxx') Sys.setenv(SPOTIFY_CLIENT_SECRET = 'xxxxxxxxxx') access_token <- get_spotify_access_token() 準備
# プレイリスト検索 res_search <- search_spotify( q = 'top50', type =
'playlist', limit = 50 ) |> dplyr::filter(owner.id == "spotify") |> #公式プレイリストに絞る select(name, id) |> #列を絞る mutate(name = name |> str_remove("Top 50 - ")) |> #プレイリスト名の整形 dplyr::filter( #ノイズになる行を削除 !(name %in% c("Global", "Greatest Hip-Hop Beats of All Time")) ) |> rowid_to_column() #ID番号を振る Top50のプレイリストを検索
検索結果 国名とプレイリストの id。
playlists_tracks <- res_search |> pull(id) |> map( #各プレイリストに含まれる楽曲を抽出 \(id) get_playlist_tracks(id)
|> select(track.id, track.name), .progress = TRUE ) |> list_rbind(names_to = "rowid") Top50のプレイリストから各楽曲のIDを検索
プレイリストに含まれる楽曲のリスト
各楽曲の分析情報を取得 res_track <- playlists_tracks |> pull(track.id) |> unique() |> map(
\(track.id) get_track_audio_features(track.id), .progress = TRUE ) |> list_rbind() |> right_join( playlists_tracks |> left_join(res_search, by = join_by(rowid)), by = join_by(id == track.id) ) |> mutate( duration_s = duration_ms / 1000, # ミリ秒を秒に country = as.factor(name) ) |> select( country, duration_s, energy, acousticness, liveness, speechiness, valence, danceability, tempo, id, track.name)
各楽曲の分析情報を取得
各楽曲の分析情報を取得 • duration_ms: 曲の長さ(ミリ秒) • energy: 0~1。騒がしい曲か静かな曲か。 • acousticness: アコースティック度合。電気的に増幅されている程度。
• liveness: 0~1。ライブ音源かスタジオ音源か。 • speechiness: 0~1。歌ではない話し言葉の量。 • valence: 0~1。ポジティブさ。 • danceability: 0~1。踊りやすさ。 • tempo: テンポ(BPM)。
各楽曲の分析情報
分析情報に関する発表事例
EDA library(summarytools) res_track |> select(!c(country, id, track.name)) |> dfSummary() |>
summarytools::view()
EDA library(GGally) res_track |> select(!c(country, id, track.name)) |> ggpairs(aes(alpha =
0.1))
国ごとの違い res_track2 |> ggplot( aes( x = reorder( country, duration_s,
FUN = median), y = duration_s)) + geom_boxplot() + coord_flip() + labs(x = "国", y = "演奏時間(秒)") + theme(text = element_text(size = 12))
クラスタリングしよう! # 国ごとに中央値を算出し、さらに標準化する median_by_country <- res_track |> select(!c(id, track.name)) |>
group_by(country, .drop = FALSE) |> summarise(across(everything(), median)) |> column_to_rownames(var = "country") |> scale() # 階層型クラスタリング library(factoextra) library(dendextend) cluster_tree <- median_by_country |> dist() |> hclust(method = "ward.D2") cluster_tree |> fviz_dend( k=6, cex=0.5, horiz = TRUE, label_cols = "black", k_colors = c( "#ff4b00", "#990099", "#03af7a", "#005aff", "#804000", "#ff8082"), rect = TRUE, rect_fill = TRUE, rect_border = 8 )
地図! clusters <- tibble( country = median_by_country |> rownames(), cluster
= cluster_tree |> cutree(k=6) ) library(ggrepel) library(sf) library(rnaturalearth) world_map <- ne_countries( scale = "small", returnclass = "sf" ) |> left_join( clusters |> mutate( country = country |> str_replace("USA", "United States") |> str_replace("South Korea", "Republic of Korea") ), by=join_by(name_long == country) ) world_map |> ggplot() + geom_sf(aes(fill = as.factor(cluster))) + theme_light() + labs(fill = "cluster") + scale_colour_brewer(palette = "Dark2")
None
Enjoy! 次回「2010年代 King Crimson のセットリスト分析」でお会いしま しょう!