Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
『改訂新版前処理大全』の話と Apache Parquet の話 #TokyoR
Search
bob3bob3
June 08, 2024
Programming
0
1.3k
『改訂新版前処理大全』の話と Apache Parquet の話 #TokyoR
『改訂新版前処理大全』のR言語版サンプルコードとApache parquetによる高速化の話。 #TokyoR
bob3bob3
June 08, 2024
Tweet
Share
More Decks by bob3bob3
See All by bob3bob3
RとLLMで自然言語処理
bob3bob3
3
770
RでPSM分析
bob3bob3
1
400
Rでコンジョイント分析 2024年版
bob3bob3
0
2k
R言語の環境構築と基礎 Tokyo.R 112
bob3bob3
0
620
『データ可視化学入門』をPythonからRに翻訳した話(増強版)
bob3bob3
0
560
『データ可視化学入門』を PythonからRに翻訳した話
bob3bob3
1
620
qeMLパッケージの紹介
bob3bob3
0
2.3k
「国と音楽」 ~spotifyrを用いて~ #muana
bob3bob3
2
620
パーマーステーションのペンギンたち#3 探索的データ分析(EDA)編
bob3bob3
1
800
Other Decks in Programming
See All in Programming
GISエンジニアから見たLINKSデータ
nokonoko1203
0
190
LLM Çağında Backend Olmak: 10 Milyon Prompt'u Milisaniyede Sorgulamak
selcukusta
0
140
Flutter On-device AI로 완성하는 오프라인 앱, 박제창 @DevFest INCHEON 2025
itsmedreamwalker
1
180
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
600
tsgolintはいかにしてtypescript-goの非公開APIを呼び出しているのか
syumai
7
2.4k
Context is King? 〜Verifiability時代とコンテキスト設計 / Beyond "Context is King"
rkaga
10
1.5k
ZJIT: The Ruby 4 JIT Compiler / Ruby Release 30th Anniversary Party
k0kubun
1
310
CSC307 Lecture 02
javiergs
PRO
1
740
TerraformとStrands AgentsでAmazon Bedrock AgentCoreのSSO認証付きエージェントを量産しよう!
neruneruo
4
2.3k
CSC307 Lecture 01
javiergs
PRO
0
650
gunshi
kazupon
1
140
実は歴史的なアップデートだと思う AWS Interconnect - multicloud
maroon1st
0
300
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
287
14k
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
410
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.5k
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
590
Joys of Absence: A Defence of Solitary Play
codingconduct
1
260
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
54
Exploring anti-patterns in Rails
aemeredith
2
220
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
270
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
30
4 Signs Your Business is Dying
shpigford
187
22k
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
120
Transcript
『改訂新版前処理大全』の話と Apache Parquet の話 Tokyo.R #113 2024/06/08 @bob3bob3
『改訂新版前処理大全』 • 2018年に発売されてデータ分析界隈で 大きな話題となった『前処理大全』のアッ プデート版。 • データサイエンスに取り組む上で欠かせ ない前処理の効率的な処理方法を網羅 的に習得できる構成。 •
サンプルデータがApache Parquet形式 で提供されているのも特徴。 • 旧版ではR、Python、SQLを用いた実装 方法を紹介していたが、改訂新版では BigQuery準拠のSQL、最新バージョンの Pandas、Rの代わりに高速なPolarsに変 更しました。
『改訂新版前処理大全』 Rの代わりに高 速なPolarsに変 更しました。
というわけで、Rで『改訂新版前処理大全』 のサンプルコードを書いています。
例1
例1)ビジネスホテルかつ宿泊人数が1名の予約履歴の抽出 reservation(200万件、11列) hotel(5千件、39列)
例1)ビジネスホテルかつ宿泊人数が1名の予約履歴の抽出 reservation(200万件、11列) hotel(5千件、39列)
例1)ビジネスホテルかつ宿泊人数が1名の予約履歴の抽出 # Not Awesome reservation |> inner_join(hotel, by = "hotel_id")
|> dplyr::filter(hotel_type == "ビジネスホテル" & people_num == 1) # Awesome reservation |> dplyr::filter(people_num == 1) |> inner_join( hotel |> dplyr::filter(hotel_type == "ビジネスホテル") |> select(hotel_id), by = "hotel_id" )
例1)ビジネスホテルかつ宿泊人数が1名の予約履歴の抽出 # Not Awesome reservation |> inner_join(hotel, by = "hotel_id")
|> dplyr::filter(hotel_type == "ビジネスホテル" & people_num == 1) reservationとhotelをすべて結合してから条件指定によってデータの抽出を行っている。 また必要な列に絞らずhotelマスターのすべての列を出力している。
例1)ビジネスホテルかつ宿泊人数が1名の予約履歴の抽出 # Awesome reservation |> dplyr::filter(people_num == 1) |> inner_join(
hotel |> dplyr::filter(hotel_type == "ビジネスホテル") |> select(hotel_id), by = "hotel_id" ) reservationとhotelそれぞれを必要な行と列に絞ってからjoinしている。
例1)ビジネスホテルかつ宿泊人数が1名の予約履歴の抽出 Awesomeなコードの方が中央値で6倍 ぐらい速い。 joinする前にそれぞれのデータをできる 限り小さくしておくこと!
Apache Parquet による前処理の高速化
Apache Parquet による前処理の高速化 • Apache Parquet はオープンソースの列指向データファイルフォーマットで、効率的 なデータの保存と検索のために設計されています。 • 複雑なデータを一括処理するための高性能な圧縮とエンコード方式を提供し、多く
のプログラミング言語と分析ツールでサポートされています。 • Rではarrowパッケージで Apache Parquet を扱うことができます。
Apache Parquet による前処理の高速化 # データフレームとして reservation_df <- read_parquet( "https://github.com/ghmagazine/awesomebook_v2/raw/main/data/reservation.parquet" )
# Arrow Table として reservation_at <- read_parquet( "https://github.com/ghmagazine/awesomebook_v2/raw/main/data/reservation.parquet", as_data_frame = FALSE ) parquet形式のデータをarrowパッケージのread_parquet()関数で読み込む。 デフォルトではデータフレームとして読み込まれるが、引数に as_data_frame = FALSE を付けるとArrow Tableとして読み込まれる。
Apache Parquet による前処理の高速化 # データフレームの処理 reservation_df |> dplyr::filter(status != "canceled")
|> summarise(reservation_cnt = n(), .by = c(hotel_id, customer_id)) # Arrow Table の処理 reservation_at |> dplyr::filter(status != "canceled") |> summarise(reservation_cnt = n(), .by = c(hotel_id, customer_id)) |> collect() #この処理が加わっただけ ホテルごと顧客ごとの予約数の集計処理。 Arrow Table も tidyverse で処理できるが、最後に collect()を実行することで結果が得られる。
Apache Parquet による前処理の高速化 中央値で約35倍の速さ! Tidyverseのすべての機能が ApacheParquetで使えるわけではない ようですが、積極的に使っていきましょ う! eitsupiさんの以前の発表やuriboさんの 資料もご参考に。
Apache Parquet の資料 @eitsupi さん @uribo さん https://eitsupi.github.io/tokyorslide/tokyor_97 https://uribo.quarto.pub/hello-r-arrow/
例2
例2)予約履歴データに対象キャンペーン情報を付与 reservation(200万件、11列) campaign(30件、3列)
例2)予約履歴データに対象キャンペーン情報を付与 reservation(200万件、11列) campaign(30件、3列)
例2)予約履歴データに対象キャンペーン情報を付与 # Not Awesome reservation |> cross_join(campaign) |> dplyr::filter(reserved_at >=
starts_at & reserved_at <= ends_at) |> select(!c(starts_at, ends_at)) # Awesome campaign_expanded <- campaign |> rowwise() |> mutate(reserve_date = list(seq(date(starts_at), date(ends_at), by="day"))) |> unnest(reserve_date) reservation |> mutate(reserve_date = date(reserved_at)) |> left_join(campaign_expanded, by = "reserve_date",relationship = "many-to-many") |> select(!reserve_date)
# Not Awesome reservation |> cross_join(campaign) |> dplyr::filter(reserved_at >= starts_at
& reserved_at <= ends_at) |> select(!c(starts_at, ends_at)) 例2)予約履歴データに対象キャンペーン情報を付与 予約履歴にキャンペーンマスターをクロス結合、その後キャンペーン期間の行のみを抽 出。最後に不要な列を削除。
# Awesome campaign_expanded <- campaign |> rowwise() |> mutate(reserve_date =
list(seq(date(starts_at), date(ends_at), by="day"))) |> unnest(reserve_date) reservation |> mutate(reserve_date = date(reserved_at)) |> left_join(campaign_expanded, by = "reserve_date",relationship = "many-to-many") |> select(!reserve_date) 例2)予約履歴データに対象キャンペーン情報を付与 キャンペーンマスターにキャンペーン期間のすべての日付の列を追加。 日付をキーに予約履歴にキャンペーンマスターを結合。
例2)予約履歴データに対象キャンペーン情報を付与 Awesomeなコードの方がおよそ6倍速い!
全編はこちらで順次公開予定 https://morimotoosamu.github.io/awesomebook_v2/
Enjoy!