Upgrade to Pro — share decks privately, control downloads, hide ads and more …

『改訂新版前処理大全』の話と Apache Parquet の話 #TokyoR

『改訂新版前処理大全』の話と Apache Parquet の話 #TokyoR

『改訂新版前処理大全』のR言語版サンプルコードとApache parquetによる高速化の話。 #TokyoR

bob3bob3

June 08, 2024
Tweet

More Decks by bob3bob3

Other Decks in Programming

Transcript

  1. 『改訂新版前処理大全』 • 2018年に発売されてデータ分析界隈で 大きな話題となった『前処理大全』のアッ プデート版。
 • データサイエンスに取り組む上で欠かせ ない前処理の効率的な処理方法を網羅 的に習得できる構成。
 •

    サンプルデータがApache Parquet形式 で提供されているのも特徴。
 • 旧版ではR、Python、SQLを用いた実装 方法を紹介していたが、改訂新版では BigQuery準拠のSQL、最新バージョンの Pandas、Rの代わりに高速なPolarsに変 更しました。

  2. 例1)ビジネスホテルかつ宿泊人数が1名の予約履歴の抽出 # Not Awesome reservation |> inner_join(hotel, by = "hotel_id")

    |> dplyr::filter(hotel_type == "ビジネスホテル" & people_num == 1) # Awesome reservation |> dplyr::filter(people_num == 1) |> inner_join( hotel |> dplyr::filter(hotel_type == "ビジネスホテル") |> select(hotel_id), by = "hotel_id" )
  3. 例1)ビジネスホテルかつ宿泊人数が1名の予約履歴の抽出 # Not Awesome reservation |> inner_join(hotel, by = "hotel_id")

    |> dplyr::filter(hotel_type == "ビジネスホテル" & people_num == 1) reservationとhotelをすべて結合してから条件指定によってデータの抽出を行っている。 また必要な列に絞らずhotelマスターのすべての列を出力している。
  4. 例1)ビジネスホテルかつ宿泊人数が1名の予約履歴の抽出 # Awesome reservation |> dplyr::filter(people_num == 1) |> inner_join(

    hotel |> dplyr::filter(hotel_type == "ビジネスホテル") |> select(hotel_id), by = "hotel_id" ) reservationとhotelそれぞれを必要な行と列に絞ってからjoinしている。
  5. Apache Parquet による前処理の高速化 # データフレームとして reservation_df <- read_parquet( "https://github.com/ghmagazine/awesomebook_v2/raw/main/data/reservation.parquet" )

    # Arrow Table として reservation_at <- read_parquet( "https://github.com/ghmagazine/awesomebook_v2/raw/main/data/reservation.parquet", as_data_frame = FALSE ) parquet形式のデータをarrowパッケージのread_parquet()関数で読み込む。 デフォルトではデータフレームとして読み込まれるが、引数に as_data_frame = FALSE を付けるとArrow Tableとして読み込まれる。
  6. Apache Parquet による前処理の高速化 # データフレームの処理 reservation_df |> dplyr::filter(status != "canceled")

    |> summarise(reservation_cnt = n(), .by = c(hotel_id, customer_id)) # Arrow Table の処理 reservation_at |> dplyr::filter(status != "canceled") |> summarise(reservation_cnt = n(), .by = c(hotel_id, customer_id)) |> collect() #この処理が加わっただけ ホテルごと顧客ごとの予約数の集計処理。 Arrow Table も tidyverse で処理できるが、最後に collect()を実行することで結果が得られる。
  7. 例2)予約履歴データに対象キャンペーン情報を付与 # Not Awesome reservation |> cross_join(campaign) |> dplyr::filter(reserved_at >=

    starts_at & reserved_at <= ends_at) |> select(!c(starts_at, ends_at)) # Awesome campaign_expanded <- campaign |> rowwise() |> mutate(reserve_date = list(seq(date(starts_at), date(ends_at), by="day"))) |> unnest(reserve_date) reservation |> mutate(reserve_date = date(reserved_at)) |> left_join(campaign_expanded, by = "reserve_date",relationship = "many-to-many") |> select(!reserve_date)
  8. # Not Awesome reservation |> cross_join(campaign) |> dplyr::filter(reserved_at >= starts_at

    & reserved_at <= ends_at) |> select(!c(starts_at, ends_at)) 例2)予約履歴データに対象キャンペーン情報を付与 予約履歴にキャンペーンマスターをクロス結合、その後キャンペーン期間の行のみを抽 出。最後に不要な列を削除。
  9. # Awesome campaign_expanded <- campaign |> rowwise() |> mutate(reserve_date =

    list(seq(date(starts_at), date(ends_at), by="day"))) |> unnest(reserve_date) reservation |> mutate(reserve_date = date(reserved_at)) |> left_join(campaign_expanded, by = "reserve_date",relationship = "many-to-many") |> select(!reserve_date) 例2)予約履歴データに対象キャンペーン情報を付与 キャンペーンマスターにキャンペーン期間のすべての日付の列を追加。 日付をキーに予約履歴にキャンペーンマスターを結合。