Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
『改訂新版前処理大全』の話と Apache Parquet の話 #TokyoR
Search
bob3bob3
June 08, 2024
Programming
0
1.3k
『改訂新版前処理大全』の話と Apache Parquet の話 #TokyoR
『改訂新版前処理大全』のR言語版サンプルコードとApache parquetによる高速化の話。 #TokyoR
bob3bob3
June 08, 2024
Tweet
Share
More Decks by bob3bob3
See All by bob3bob3
RとLLMで自然言語処理
bob3bob3
3
770
RでPSM分析
bob3bob3
1
400
Rでコンジョイント分析 2024年版
bob3bob3
0
2k
R言語の環境構築と基礎 Tokyo.R 112
bob3bob3
0
620
『データ可視化学入門』をPythonからRに翻訳した話(増強版)
bob3bob3
0
560
『データ可視化学入門』を PythonからRに翻訳した話
bob3bob3
1
620
qeMLパッケージの紹介
bob3bob3
0
2.3k
「国と音楽」 ~spotifyrを用いて~ #muana
bob3bob3
2
610
パーマーステーションのペンギンたち#3 探索的データ分析(EDA)編
bob3bob3
1
800
Other Decks in Programming
See All in Programming
AI 駆動開発ライフサイクル(AI-DLC):ソフトウェアエンジニアリングの再構築 / AI-DLC Introduction
kanamasa
11
4.6k
20251212 AI 時代的 Legacy Code 營救術 2025 WebConf
mouson
0
230
2年のAppleウォレットパス開発の振り返り
muno92
PRO
0
130
実はマルチモーダルだった。ブラウザの組み込みAI🧠でWebの未来を感じてみよう #jsfes #gemini
n0bisuke2
3
1.4k
DevFest Android in Korea 2025 - 개발자 커뮤니티를 통해 얻는 가치
wisemuji
0
180
愛される翻訳の秘訣
kishikawakatsumi
3
360
AI前提で考えるiOSアプリのモダナイズ設計
yuukiw00w
0
210
Kotlin Multiplatform Meetup - Compose Multiplatform 외부 의존성 아키텍처 설계부터 운영까지
wisemuji
0
150
開発に寄りそう自動テストの実現
goyoki
2
1.6k
C-Shared Buildで突破するAI Agent バックテストの壁
po3rin
0
420
公共交通オープンデータ × モバイルUX 複雑な運行情報を 『直感』に変換する技術
tinykitten
PRO
0
180
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
530
Featured
See All Featured
Building Applications with DynamoDB
mza
96
6.9k
The Cult of Friendly URLs
andyhume
79
6.7k
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
140
4 Signs Your Business is Dying
shpigford
187
22k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
36
[SF Ruby Conf 2025] Rails X
palkan
0
660
How GitHub (no longer) Works
holman
316
140k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Thoughts on Productivity
jonyablonski
73
5k
Designing Experiences People Love
moore
143
24k
The Curious Case for Waylosing
cassininazir
0
200
A Soul's Torment
seathinner
1
2.1k
Transcript
『改訂新版前処理大全』の話と Apache Parquet の話 Tokyo.R #113 2024/06/08 @bob3bob3
『改訂新版前処理大全』 • 2018年に発売されてデータ分析界隈で 大きな話題となった『前処理大全』のアッ プデート版。 • データサイエンスに取り組む上で欠かせ ない前処理の効率的な処理方法を網羅 的に習得できる構成。 •
サンプルデータがApache Parquet形式 で提供されているのも特徴。 • 旧版ではR、Python、SQLを用いた実装 方法を紹介していたが、改訂新版では BigQuery準拠のSQL、最新バージョンの Pandas、Rの代わりに高速なPolarsに変 更しました。
『改訂新版前処理大全』 Rの代わりに高 速なPolarsに変 更しました。
というわけで、Rで『改訂新版前処理大全』 のサンプルコードを書いています。
例1
例1)ビジネスホテルかつ宿泊人数が1名の予約履歴の抽出 reservation(200万件、11列) hotel(5千件、39列)
例1)ビジネスホテルかつ宿泊人数が1名の予約履歴の抽出 reservation(200万件、11列) hotel(5千件、39列)
例1)ビジネスホテルかつ宿泊人数が1名の予約履歴の抽出 # Not Awesome reservation |> inner_join(hotel, by = "hotel_id")
|> dplyr::filter(hotel_type == "ビジネスホテル" & people_num == 1) # Awesome reservation |> dplyr::filter(people_num == 1) |> inner_join( hotel |> dplyr::filter(hotel_type == "ビジネスホテル") |> select(hotel_id), by = "hotel_id" )
例1)ビジネスホテルかつ宿泊人数が1名の予約履歴の抽出 # Not Awesome reservation |> inner_join(hotel, by = "hotel_id")
|> dplyr::filter(hotel_type == "ビジネスホテル" & people_num == 1) reservationとhotelをすべて結合してから条件指定によってデータの抽出を行っている。 また必要な列に絞らずhotelマスターのすべての列を出力している。
例1)ビジネスホテルかつ宿泊人数が1名の予約履歴の抽出 # Awesome reservation |> dplyr::filter(people_num == 1) |> inner_join(
hotel |> dplyr::filter(hotel_type == "ビジネスホテル") |> select(hotel_id), by = "hotel_id" ) reservationとhotelそれぞれを必要な行と列に絞ってからjoinしている。
例1)ビジネスホテルかつ宿泊人数が1名の予約履歴の抽出 Awesomeなコードの方が中央値で6倍 ぐらい速い。 joinする前にそれぞれのデータをできる 限り小さくしておくこと!
Apache Parquet による前処理の高速化
Apache Parquet による前処理の高速化 • Apache Parquet はオープンソースの列指向データファイルフォーマットで、効率的 なデータの保存と検索のために設計されています。 • 複雑なデータを一括処理するための高性能な圧縮とエンコード方式を提供し、多く
のプログラミング言語と分析ツールでサポートされています。 • Rではarrowパッケージで Apache Parquet を扱うことができます。
Apache Parquet による前処理の高速化 # データフレームとして reservation_df <- read_parquet( "https://github.com/ghmagazine/awesomebook_v2/raw/main/data/reservation.parquet" )
# Arrow Table として reservation_at <- read_parquet( "https://github.com/ghmagazine/awesomebook_v2/raw/main/data/reservation.parquet", as_data_frame = FALSE ) parquet形式のデータをarrowパッケージのread_parquet()関数で読み込む。 デフォルトではデータフレームとして読み込まれるが、引数に as_data_frame = FALSE を付けるとArrow Tableとして読み込まれる。
Apache Parquet による前処理の高速化 # データフレームの処理 reservation_df |> dplyr::filter(status != "canceled")
|> summarise(reservation_cnt = n(), .by = c(hotel_id, customer_id)) # Arrow Table の処理 reservation_at |> dplyr::filter(status != "canceled") |> summarise(reservation_cnt = n(), .by = c(hotel_id, customer_id)) |> collect() #この処理が加わっただけ ホテルごと顧客ごとの予約数の集計処理。 Arrow Table も tidyverse で処理できるが、最後に collect()を実行することで結果が得られる。
Apache Parquet による前処理の高速化 中央値で約35倍の速さ! Tidyverseのすべての機能が ApacheParquetで使えるわけではない ようですが、積極的に使っていきましょ う! eitsupiさんの以前の発表やuriboさんの 資料もご参考に。
Apache Parquet の資料 @eitsupi さん @uribo さん https://eitsupi.github.io/tokyorslide/tokyor_97 https://uribo.quarto.pub/hello-r-arrow/
例2
例2)予約履歴データに対象キャンペーン情報を付与 reservation(200万件、11列) campaign(30件、3列)
例2)予約履歴データに対象キャンペーン情報を付与 reservation(200万件、11列) campaign(30件、3列)
例2)予約履歴データに対象キャンペーン情報を付与 # Not Awesome reservation |> cross_join(campaign) |> dplyr::filter(reserved_at >=
starts_at & reserved_at <= ends_at) |> select(!c(starts_at, ends_at)) # Awesome campaign_expanded <- campaign |> rowwise() |> mutate(reserve_date = list(seq(date(starts_at), date(ends_at), by="day"))) |> unnest(reserve_date) reservation |> mutate(reserve_date = date(reserved_at)) |> left_join(campaign_expanded, by = "reserve_date",relationship = "many-to-many") |> select(!reserve_date)
# Not Awesome reservation |> cross_join(campaign) |> dplyr::filter(reserved_at >= starts_at
& reserved_at <= ends_at) |> select(!c(starts_at, ends_at)) 例2)予約履歴データに対象キャンペーン情報を付与 予約履歴にキャンペーンマスターをクロス結合、その後キャンペーン期間の行のみを抽 出。最後に不要な列を削除。
# Awesome campaign_expanded <- campaign |> rowwise() |> mutate(reserve_date =
list(seq(date(starts_at), date(ends_at), by="day"))) |> unnest(reserve_date) reservation |> mutate(reserve_date = date(reserved_at)) |> left_join(campaign_expanded, by = "reserve_date",relationship = "many-to-many") |> select(!reserve_date) 例2)予約履歴データに対象キャンペーン情報を付与 キャンペーンマスターにキャンペーン期間のすべての日付の列を追加。 日付をキーに予約履歴にキャンペーンマスターを結合。
例2)予約履歴データに対象キャンペーン情報を付与 Awesomeなコードの方がおよそ6倍速い!
全編はこちらで順次公開予定 https://morimotoosamu.github.io/awesomebook_v2/
Enjoy!