문제들을 소프트웨어 엔 지니어링을 통해 해결해요. 빠르게 성장하는 당근마켓에 발맞추어 미래에 병목이 되지 않을 데이터 시스템을 설계하 고, 자동화된 테스트와 시스템에 대한 관측성 확보를 통해 데이터의 신뢰성을 지켜내요. Scalability Automation / Testability Observability Data Quality
Analytics SaaS: 과집계, 오집계, 적재 속도의 불확실성, 블랙박스인 기준들 In house event collection: 신뢰성, 내부 데이터와의 연결성, 통일된 기준 한 곳으로 데이터를 모으기 데이터 파편화 문제 점점 늘어나는 데이터 소스들과 지표들 • 하루가 멀다하고 늘어나는 서비스 데이터베이스 • 서드파티 데이터들 ex. Appsflyer, … BigQuery로 데이터를 통합
◦ ex. 게시글 피드 노출 현황을 알고 싶은데 어디서 찾아봐야 하나요? • 데이터의 의미 이해하기: 이 데이터는 뭐고, 어떻게 생겼고, 어떻게 쓰는가? ◦ ex. 게시글 테이블을 찾았는데, 이 필드는 대체 무슨 뜻이고 어떻게 쿼리해야 하나요? • 데이터의 소유자와 여정 Lineage , 생애주기 이해하기: 이 데이터는 어디에서 발생하고, 누 가 만들고 있나요? 이 데이터는 어떤 테이블에서 계산되고, 어디서 쓰이나요? ◦ ex. 게시글 테이블은 어떤 서비스에서 온건가요? 이 테이블은 어떻게 계산된 건가요?
및 구현 • 사람이 이벤트를 추가하다 보면 결국 실수가 생긴다 • 중앙화되어 있고, 규칙이 있다면 자동화가 가능한 영역이 아닐까? Primitive event를 기반 사용자 이벤트 로깅 자동화! • ex. view, click, screen enter/leave, scroll