Upgrade to Pro — share decks privately, control downloads, hide ads and more …

進化計算ライブラリ DEAP の紹介

chimuichimu
August 22, 2024
71

進化計算ライブラリ DEAP の紹介

chimuichimu

August 22, 2024
Tweet

More Decks by chimuichimu

Transcript

  1. 進化計算アルゴリズムとは © 2024 Wantedly, Inc. • 生物の進化の仕組みを模倣して問題解決をする計算手法 • アルゴリズムの例 ◦

    遺伝的アルゴリズム、進化戦略、遺伝的プログラミング、など • 応用領域 ◦ 組合せ最適化、スケジューリング、制御、ゲームAI、など
  2. 現世代 例:遺伝的アルゴリズムのイメージ © 2024 Wantedly, Inc. 1 2 N -

    1 N ・・・ 適合度の計算 遺伝的操作 選択 交叉 突然変異 次世代 1 2 ・・・ N - 1 N 最大世代数まで繰り返し
  3. DEAP (Distributed Evolutionary Algorithms in Python) とは © 2024 Wantedly,

    Inc. • 進化計算アルゴリズムのフレームワークを提供するPythonライブラリ • 特徴 ◦ 複数の進化計算アルゴリズムの提供 ◦ アルゴリズムのカスタマイズ性 ◦ 分散環境での並列処理のサポート • GitHub Star 数 ◦ 5.7 k https://github.com/DEAP/deap
  4. DEAP による遺伝的アルゴリズムの実装イメージ © 2024 Wantedly, Inc. https://deap.readthedocs.io/en/master/examples/ga_onemax_short.html 例:OneMax 問題 タスク:

    [0, 1, 1, 1, 0]のようなバイナリの数列の和を 最大化する問題 コードの実行結果: 0-5世代 96-100世代 理論値(=100) に近い値を達成
  5. まとめ © 2024 Wantedly, Inc. • 進化計算アルゴリズムは最適化などの問題に用いられる • 進化計算のフレームワークを提供する DEAP

    を紹介 • DEAP を使うことで遺伝的アルゴリズムなどを容易に実装でき、自分のニーズに 合わせた進化的アルゴリズムが構築可能