Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
分析案件をやり始めたときに陥っていたことの共有と対策 / DS project for beg...
Search
Chitose
November 14, 2022
Technology
0
120
分析案件をやり始めたときに陥っていたことの共有と対策 / DS project for beginner
2019年11月に某LT会で発表したDS初心者向けの内容です。
当時のちとせの考えていたこと&スライドデザインセンスと考えてください。
分析案件をやるときにこういうこと考えないとなーって内容です。
Chitose
November 14, 2022
Tweet
Share
More Decks by Chitose
See All by Chitose
VRPDanceStudioちとせクラス第3回_体幹と体軸/ ChitoseClass_3_VRPDanceStudio
chitose_snn
0
24
VRPDanceStudioちとせクラス第1,2回_インターロック/ ChitoseClass_Interlock_VRPDanceStudio
chitose_snn
0
62
ゆるふわ因果推論入門 / casual talk about causal inference
chitose_snn
0
270
イベント参加者向けVRChatガチ初心者ガイド / VRChat for ultra beginner
chitose_snn
3
870
Notionによる情報収集と情報整理 / how_to_collect_information_by_notion
chitose_snn
0
120
Other Decks in Technology
See All in Technology
Oracle Database Technology Night #87-1 : Exadata Database Service on Exascale Infrastructure(ExaDB-XS)サービス詳細
oracle4engineer
PRO
1
210
困難を「一般解」で解く
fujiwara3
7
1.7k
Snowflake ML モデルを dbt データパイプラインに組み込む
estie
0
110
事業を差別化する技術を生み出す技術
pyama86
2
500
LINEギフトにおけるバックエンド開発
lycorptech_jp
PRO
0
410
入門 PEAK Threat Hunting @SECCON
odorusatoshi
0
180
LayerXにおけるAI活用事例とその裏側(2025年2月) バクラクの目指す “業務の自動運転” の例 / layerx-ai-deim2025
yuya4
1
350
クラウド関連のインシデントケースを収集して見えてきたもの
lhazy
9
1.9k
Qiita Organizationを導入したら、アウトプッターが爆増して会社がちょっと有名になった件
minorun365
PRO
1
310
ExaDB-XSで利用されているExadata Exascaleについて
oracle4engineer
PRO
3
300
Platform Engineeringで クラウドの「楽しくない」を解消しよう
jacopen
4
190
データベースの負荷を紐解く/untangle-the-database-load
emiki
2
550
Featured
See All Featured
A better future with KSS
kneath
238
17k
Site-Speed That Sticks
csswizardry
4
410
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Writing Fast Ruby
sferik
628
61k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
10
530
Dealing with People You Can't Stand - Big Design 2015
cassininazir
366
25k
For a Future-Friendly Web
brad_frost
176
9.6k
Designing on Purpose - Digital PM Summit 2013
jponch
117
7.1k
RailsConf 2023
tenderlove
29
1k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
GitHub's CSS Performance
jonrohan
1030
460k
How STYLIGHT went responsive
nonsquared
99
5.4k
Transcript
分析案件をやり始めたときに 陥っていたことの共有と対策 ちとせちゃん (@chitose_ng_vrc)
後⽇、スライドのアップロードをします。 Caution □□□□□□□□□□ 0/100%
このスライドは19年11⽉に作成した内容 の固有名詞の⼀部を修正しただけなので 当時のちとせ観点でのお話です Caution □□□□□□□□□□ 0/100%
Company Revisio株式会社 (旧TVISION INSIGHTS株式会社) Work - テレビの視聴態度のR&D - クライアントKPIとの関係性調査 ʘςϨϏͷࢹௌଶΛଌΔձࣾʗ
Other DS⽤アカウント→チトセナガノ(@chitose_ng) まずは蝋の翼から Tableauデータ分析 ~実践から活⽤まで~ プロフィール NO PRESENTATION ?/100%
2015 04 2017 09 2019 01 Today SQLおじさん (データ抽出の⼈/ データアーキテクト)
R&D クライアント分析 2年半 1年半 BI屋 10ヶ⽉ ʘίίͷؾ͖ʗ 経歴 □□□□□□□□□□ 6/100%
分析案件をやり始めたときに よくあった会話
こんな感じのモデル考えてます! ◦◦という手法もあると思うけど なんでこの手法なの? な、なんとなくっす。。。 本当にあったアレな会話1 ʘ ্ ࢘ Ͱ ͢
ʗ ▪□□□□□□□□□ 10/100%
こんな感じのモデル考えてます! このモデル式だと☓☓に△△って仮定を置 いてるってことだよね? あっ、はい多分そうっす。 (言われるまで意識してなかったけど) 本当にあったアレな会話2 ʘ ্ ࢘ Ͱ
͢ ʗ ▪□□□□□□□□□ 12/100%
何故なんとなく分析をしてしまうのか︖ Topic
何故なんとなく分析をしてしまうのか 1 モデルの構築⼿法を どうやって選んだらいいのかわかっていない ▪□□□□□□□□□ 16/100%
1 モデルの構築⼿法を どうやって選んだらいいのかわかっていない 2 モデルの構築⼿法を選んだあとに 何について考えればいいのかわかっていない ▪▪□□□□□□□□ 20/100% 何故なんとなく分析をしてしまうのか
1 モデルの構築⼿法を どうやって選んだらいいのかわかっていない 2 モデルの構築⼿法を選んだあとに 何について考えればいいのかわかっていない テキトーにそれっぽい⼿法を選ぶ理由 テキトーに選んだ⼿法で、 テキトーに要素を⽳埋めする理由 ▪▪□□□□□□□□
26/100% 何故なんとなく分析をしてしまうのか
1 モデルの構築⼿法を どうやって選んだらいいのかわかっていない 2 モデルの構築⼿法を選んだあとに 何について考えればいいのかわかっていない どうやって防ぐか テキトーにそれっぽい⼿法を選ぶ理由 ▪▪▪□□□□□□□ 35/100%
何故なんとなく分析をしてしまうのか
テキトーにそれっぽい⼿法を選ぶの をどう防ぐか 何故その⼿法が必要なのかを考えた学習をする ▪▪▪□□□□□□□ 37/100%
テキトーにそれっぽい⼿法を選ぶの をどう防ぐか 何故その⼿法が必要なのかを考えた学習をする 何のために存在する⼿法︖ ▪▪▪▪□□□□□□ 40/100%
テキトーにそれっぽい⼿法を選ぶの をどう防ぐか 何故その⼿法が必要なのかを考えた学習をする 類似⼿法と⽐較した、 メリット・デメリットは︖ ▪▪▪▪□□□□□□ 42/100%
テキトーにそれっぽい⼿法を選ぶの をどう防ぐか 何故その⼿法が必要なのかを考えた学習をする 類似⼿法と⽐較した、 メリット・デメリットは︖ 類似⼿法との違いは、 何故うまれたの︖ ▪▪▪▪□□□□□□ 45/100%
テキトーにそれっぽい⼿法を選ぶの をどう防ぐか 何故その⼿法が必要なのかを考えた学習をする 何のために存在する⼿法︖ 類似⼿法との⽐較した、 メリット・デメリットは︖ 類似⼿法との違いは、 何故うまれたの︖ 要するに、論⽂のような読み⽅で理解・学習
Random Forestと Gradient Boosting Decision Treeの違いを ⾔えますか︖ Example ▪▪▪▪▪□□□□□ 50/100%
何故モデルをなんとなく作るか 1 モデルの構築⼿法を どうやって選んだらいいのかわかっていない 2 モデルの構築⼿法を選んだあとに 何について考えればいいのかわかっていない どうやって防ぐか テキトーに選んだ⼿法で、 テキトーに要素を⽳埋めする理由
▪▪▪▪▪□□□□□ 57/100%
選んだ要素ひとつひとつに問いを⽴て、 何故選んだのか説明可能な状態にする テキトーに要素を ⽳埋めするのをどう防ぐか ▪▪▪▪▪▪□□□□ 60/100%
説明ができない部分は、 考えていない部分 選んだ要素ひとつひとつに問いを⽴て、 何故選んだのか説明可能な状態にする テキトーに要素を ⽳埋めするのをどう防ぐか ▪▪▪▪▪▪□□□□ 62/100%
説明ができない部分は、 考えていない部分 この思考を繰り返すと、 考えて要素を⼊れられるようになる 選んだ要素ひとつひとつに問いを⽴て、 何故選んだのか説明可能な状態にする テキトーに要素を ⽳埋めするのをどう防ぐか ▪▪▪▪▪▪□□□□ 67/100%
次のモデルへの問いは何か Example ▪▪▪▪▪▪▪□□□ 70/100%
CM認知度 = α CM本数 + β CM種類ダミー + 定数 Example
▪▪▪▪▪▪▪□□□ 72/100%
Example OLSで解くので正規分布 CM認知度 = α CM本数 + β CM種類ダミー +
定数 ▪▪▪▪▪▪▪□□□ 74/100% どういう仮定を置いたモデル式なのか
Example CM認知度 = α CM本数 + β CM種類ダミー + 定数
▪▪▪▪▪▪▪□□□ 78/100% どういう仮定を置いたモデル式なのか 値が線形増加する OLSで解くので正規分布
Example CM認知度 = α CM本数 + β CM種類ダミー + 定数
▪▪▪▪▪▪▪▪□□ 82/100% どういう仮定を置いたモデル式なのか 値が線形増加する OLSで解くので正規分布 CM種類が別でも 効果が同じ
Example CM認知度 = α CM本数 + β CM種類ダミー + 定数
▪▪▪▪▪▪▪▪□□ 83/100% 値が線形増加する どういう仮定を置いたモデル式なのか 途中で飽和するから 対数化が必要では︖ OLSで解くので正規分布 CM種類が別でも 効果が同じ
Example CM認知度 = α CM本数 + β CM種類ダミー + 定数
▪▪▪▪▪▪▪▪□□ 87/100% 値が線形増加する どういう仮定を置いたモデル式なのか 途中で飽和するから 対数化が必要では︖ OLSで解くので正規分布 CM種類が別でも 効果が同じ CM種類で 効果が違うのでは︖
Example CM認知度 = α CM本数 + β CM種類ダミー + 定数
値が線形増加する どういう仮定を置いたモデル式なのか 途中で飽和するから 対数化が必要では︖ OLSで解くので正規分布 CM種類が別でも 効果が同じ CM種類で 効果が違うのでは︖ 何を問えばいいのかは慣れが必要。 はじめは上司に⼿伝ってもらおう。
今⽇のまとめ Today’s Summary ▪▪▪▪▪▪▪▪▪□ 94/100%
⾃分の頭でちゃんと考えた分析をするためには Today’s Summary 1 ⼿法の違いを意識して学習し、 2 何について考えればいいのか把握し思考することで、 3 ⾃分が考えたあらゆる選択に対して、説明可能にする。 ▪▪▪▪▪▪▪▪▪□
95/100%
▪▪▪▪▪▪▪▪▪▪ 100/100%