Upgrade to Pro — share decks privately, control downloads, hide ads and more …

DS project for beginner / 分析案件をやり始めたときに陥っていたことの共有と対策

Chitose
November 14, 2022

DS project for beginner / 分析案件をやり始めたときに陥っていたことの共有と対策

2019年11月に某LT会で発表したDS初心者向けの内容です。
当時のちとせの考えていたこと&スライドデザインセンスと考えてください。
分析案件をやるときにこういうこと考えないとなーって内容です。

Chitose

November 14, 2022
Tweet

More Decks by Chitose

Other Decks in Technology

Transcript

  1. 分析案件をやり始めたときに 陥っていたことの共有と対策 ちとせちゃん (@chitose_ng_vrc)

  2. 後⽇、スライドのアップロードをします。 Caution □□□□□□□□□□ 0/100%

  3. このスライドは19年11⽉に作成した内容 の固有名詞の⼀部を修正しただけなので 当時のちとせ観点でのお話です Caution □□□□□□□□□□ 0/100%

  4. Company Revisio株式会社 (旧TVISION INSIGHTS株式会社) Work - テレビの視聴態度のR&D - クライアントKPIとの関係性調査 ʘςϨϏͷࢹௌଶ౓ΛଌΔձࣾʗ

    Other DS⽤アカウント→チトセナガノ(@chitose_ng) まずは蝋の翼から Tableauデータ分析 ~実践から活⽤まで~ プロフィール NO PRESENTATION ?/100%
  5. 2015 04 2017 09 2019 01 Today SQLおじさん (データ抽出の⼈/ データアーキテクト)

    R&D クライアント分析 2年半 1年半 BI屋 10ヶ⽉ ʘίίͷؾ෇͖ʗ 経歴 □□□□□□□□□□ 6/100%
  6. 分析案件をやり始めたときに よくあった会話

  7. こんな感じのモデル考えてます! ◦◦という手法もあると思うけど なんでこの手法なの? な、なんとなくっす。。。 本当にあったアレな会話1 ʘ ্ ࢘ Ͱ ͢

    ʗ ▪□□□□□□□□□ 10/100%
  8. こんな感じのモデル考えてます! このモデル式だと☓☓に△△って仮定を置 いてるってことだよね? あっ、はい多分そうっす。 (言われるまで意識してなかったけど) 本当にあったアレな会話2 ʘ ্ ࢘ Ͱ

    ͢ ʗ ▪□□□□□□□□□ 12/100%
  9. 何故なんとなく分析をしてしまうのか︖ Topic

  10. 何故なんとなく分析をしてしまうのか 1 モデルの構築⼿法を どうやって選んだらいいのかわかっていない ▪□□□□□□□□□ 16/100%

  11. 1 モデルの構築⼿法を どうやって選んだらいいのかわかっていない 2 モデルの構築⼿法を選んだあとに 何について考えればいいのかわかっていない ▪▪□□□□□□□□ 20/100% 何故なんとなく分析をしてしまうのか

  12. 1 モデルの構築⼿法を どうやって選んだらいいのかわかっていない 2 モデルの構築⼿法を選んだあとに 何について考えればいいのかわかっていない テキトーにそれっぽい⼿法を選ぶ理由 テキトーに選んだ⼿法で、 テキトーに要素を⽳埋めする理由 ▪▪□□□□□□□□

    26/100% 何故なんとなく分析をしてしまうのか
  13. 1 モデルの構築⼿法を どうやって選んだらいいのかわかっていない 2 モデルの構築⼿法を選んだあとに 何について考えればいいのかわかっていない どうやって防ぐか テキトーにそれっぽい⼿法を選ぶ理由 ▪▪▪□□□□□□□ 35/100%

    何故なんとなく分析をしてしまうのか
  14. テキトーにそれっぽい⼿法を選ぶの をどう防ぐか 何故その⼿法が必要なのかを考えた学習をする ▪▪▪□□□□□□□ 37/100%

  15. テキトーにそれっぽい⼿法を選ぶの をどう防ぐか 何故その⼿法が必要なのかを考えた学習をする 何のために存在する⼿法︖ ▪▪▪▪□□□□□□ 40/100%

  16. テキトーにそれっぽい⼿法を選ぶの をどう防ぐか 何故その⼿法が必要なのかを考えた学習をする 類似⼿法と⽐較した、 メリット・デメリットは︖ ▪▪▪▪□□□□□□ 42/100%

  17. テキトーにそれっぽい⼿法を選ぶの をどう防ぐか 何故その⼿法が必要なのかを考えた学習をする 類似⼿法と⽐較した、 メリット・デメリットは︖ 類似⼿法との違いは、 何故うまれたの︖ ▪▪▪▪□□□□□□ 45/100%

  18. テキトーにそれっぽい⼿法を選ぶの をどう防ぐか 何故その⼿法が必要なのかを考えた学習をする 何のために存在する⼿法︖ 類似⼿法との⽐較した、 メリット・デメリットは︖ 類似⼿法との違いは、 何故うまれたの︖ 要するに、論⽂のような読み⽅で理解・学習

  19. Random Forestと Gradient Boosting Decision Treeの違いを ⾔えますか︖ Example ▪▪▪▪▪□□□□□ 50/100%

  20. 何故モデルをなんとなく作るか 1 モデルの構築⼿法を どうやって選んだらいいのかわかっていない 2 モデルの構築⼿法を選んだあとに 何について考えればいいのかわかっていない どうやって防ぐか テキトーに選んだ⼿法で、 テキトーに要素を⽳埋めする理由

    ▪▪▪▪▪□□□□□ 57/100%
  21. 選んだ要素ひとつひとつに問いを⽴て、 何故選んだのか説明可能な状態にする テキトーに要素を ⽳埋めするのをどう防ぐか ▪▪▪▪▪▪□□□□ 60/100%

  22. 説明ができない部分は、 考えていない部分 選んだ要素ひとつひとつに問いを⽴て、 何故選んだのか説明可能な状態にする テキトーに要素を ⽳埋めするのをどう防ぐか ▪▪▪▪▪▪□□□□ 62/100%

  23. 説明ができない部分は、 考えていない部分 この思考を繰り返すと、 考えて要素を⼊れられるようになる 選んだ要素ひとつひとつに問いを⽴て、 何故選んだのか説明可能な状態にする テキトーに要素を ⽳埋めするのをどう防ぐか ▪▪▪▪▪▪□□□□ 67/100%

  24. 次のモデルへの問いは何か Example ▪▪▪▪▪▪▪□□□ 70/100%

  25. CM認知度 = α CM本数 + β CM種類ダミー + 定数 Example

    ▪▪▪▪▪▪▪□□□ 72/100%
  26. Example OLSで解くので正規分布 CM認知度 = α CM本数 + β CM種類ダミー +

    定数 ▪▪▪▪▪▪▪□□□ 74/100% どういう仮定を置いたモデル式なのか
  27. Example CM認知度 = α CM本数 + β CM種類ダミー + 定数

    ▪▪▪▪▪▪▪□□□ 78/100% どういう仮定を置いたモデル式なのか 値が線形増加する OLSで解くので正規分布
  28. Example CM認知度 = α CM本数 + β CM種類ダミー + 定数

    ▪▪▪▪▪▪▪▪□□ 82/100% どういう仮定を置いたモデル式なのか 値が線形増加する OLSで解くので正規分布 CM種類が別でも 効果が同じ
  29. Example CM認知度 = α CM本数 + β CM種類ダミー + 定数

    ▪▪▪▪▪▪▪▪□□ 83/100% 値が線形増加する どういう仮定を置いたモデル式なのか 途中で飽和するから 対数化が必要では︖ OLSで解くので正規分布 CM種類が別でも 効果が同じ
  30. Example CM認知度 = α CM本数 + β CM種類ダミー + 定数

    ▪▪▪▪▪▪▪▪□□ 87/100% 値が線形増加する どういう仮定を置いたモデル式なのか 途中で飽和するから 対数化が必要では︖ OLSで解くので正規分布 CM種類が別でも 効果が同じ CM種類で 効果が違うのでは︖
  31. Example CM認知度 = α CM本数 + β CM種類ダミー + 定数

    値が線形増加する どういう仮定を置いたモデル式なのか 途中で飽和するから 対数化が必要では︖ OLSで解くので正規分布 CM種類が別でも 効果が同じ CM種類で 効果が違うのでは︖ 何を問えばいいのかは慣れが必要。 はじめは上司に⼿伝ってもらおう。
  32. 今⽇のまとめ Today’s Summary ▪▪▪▪▪▪▪▪▪□ 94/100%

  33. ⾃分の頭でちゃんと考えた分析をするためには Today’s Summary 1 ⼿法の違いを意識して学習し、 2 何について考えればいいのか把握し思考することで、 3 ⾃分が考えたあらゆる選択に対して、説明可能にする。 ▪▪▪▪▪▪▪▪▪□

    95/100%
  34. ▪▪▪▪▪▪▪▪▪▪ 100/100%