and computation • Especially important where synchronization is hard • “Internet of Things” Low power, limited memory and connectivity • Mobile Applications Offline operation with replicated, shared state 3
and computation • Especially important where synchronization is hard • “Internet of Things” Low power, limited memory and connectivity • Mobile Applications Offline operation with replicated, shared state • How should we manage state? 3
runtime system that can scale to large numbers of nodes, that is resilient to failures and provides efficient execution • Well-matched to Lattice Processing (Lasp) 4
runtime system that can scale to large numbers of nodes, that is resilient to failures and provides efficient execution • Well-matched to Lattice Processing (Lasp) • Epidemic broadcast mechanisms provide weak ordering but are resilient and efficient 4
runtime system that can scale to large numbers of nodes, that is resilient to failures and provides efficient execution • Well-matched to Lattice Processing (Lasp) • Epidemic broadcast mechanisms provide weak ordering but are resilient and efficient • Lasp’s programming model is tolerant to message re-ordering, disconnections, and node failures 4
runtime system that can scale to large numbers of nodes, that is resilient to failures and provides efficient execution • Well-matched to Lattice Processing (Lasp) • Epidemic broadcast mechanisms provide weak ordering but are resilient and efficient • Lasp’s programming model is tolerant to message re-ordering, disconnections, and node failures • “Selective Receive” Nodes selectively receive and process messages based on interest. 4
programming model for “eventually consistent” computations • Convergent data structures Primary data abstraction is the CRDT • Enables composition Provides functional composition of CRDTs that preserves the SEC property 6
elements to initial set and update. update(S1, {add, [1,2,3]}), %% Create second set. S2 = declare(set), %% Apply map operation between S1 and S2. map(S1, fun(X) -> X * 2 end, S2).
elements to initial set and update. update(S1, {add, [1,2,3]}), %% Create second set. S2 = declare(set), %% Apply map operation between S1 and S2. map(S1, fun(X) -> X * 2 end, S2).
elements to initial set and update. update(S1, {add, [1,2,3]}), %% Create second set. S2 = declare(set), %% Apply map operation between S1 and S2. map(S1, fun(X) -> X * 2 end, S2).
elements to initial set and update. update(S1, {add, [1,2,3]}), %% Create second set. S2 = declare(set), %% Apply map operation between S1 and S2. map(S1, fun(X) -> X * 2 end, S2).
elements to initial set and update. update(S1, {add, [1,2,3]}), %% Create second set. S2 = declare(set), %% Apply map operation between S1 and S2. map(S1, fun(X) -> X * 2 end, S2).
a CRDT produces a monotonic stream of states • Monotonic processes Read from one or more input replica streams and produce a single output replica stream 13
a CRDT produces a monotonic stream of states • Monotonic processes Read from one or more input replica streams and produce a single output replica stream • Inflationary reads Read operation ensures that we only read inflationary updates to replicas 13
are paid according to a minimum number of impressions • Clients will go offline Clients have limited connectivity and the system still needs to make progress while clients are offline 24
Ad Counter 1 Riot Ad Counter 2 Contracts Ads Contracts Ads With Contracts Riot Ads Rovio Ads Filter Product Read 50,000 Remove Increment Read Union Lasp Operation User-Maintained CRDT Lasp-Maintained CRDT Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Client Side, Single Copy at Client 25
Ad Counter 1 Riot Ad Counter 2 Contracts Ads Contracts Ads With Contracts Riot Ads Rovio Ads Filter Product Read 50,000 Remove Increment Read Union Rovio Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 1 Client 27 Ads Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Riot Ad Counter 2 Contracts Ads Contracts Ads With Contracts Riot Ads Rovio Ads Filter Product Read 50,000 Remove Increment Read Union Lasp Operation User-Maintained CRDT Lasp-Maintained CRDT Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Client Side, Single Copy at Client
Ad ounter 1 Riot Ad ounter 2 Contracts Ads Contracts Ads With Contracts Riot Ads Rovio Ads Filter Product Read 50,000 Remove Increment Read Union Rovio Ad Counter 1 Ro C Rovio Ad Counter 1 Ro C Rovio Ad Counter 1 Ro C Rovio Ad Counter 1 Ro C Client Side, Sing 28 Ads Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Riot Ad Counter 2 Contracts Ads Contracts Ads With Contracts Riot Ads Rovio Ads Filter Product Read 50,000 Remove Increment Read Union Lasp Operation User-Maintained CRDT Lasp-Maintained CRDT Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Client Side, Single Copy at Client
Ads Filter Product move Read Union Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Client Side, Single Copy at Client 29 Ads Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Riot Ad Counter 2 Contracts Ads Contracts Ads With Contracts Riot Ads Rovio Ads Filter Product Read 50,000 Remove Increment Read Union Lasp Operation User-Maintained CRDT Lasp-Maintained CRDT Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Client Side, Single Copy at Client
Union Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Client Side, Single Copy at Client 30 Ads Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Riot Ad Counter 2 Contracts Ads Contracts Ads With Contracts Riot Ads Rovio Ads Filter Product Read 50,000 Remove Increment Read Union Lasp Operation User-Maintained CRDT Lasp-Maintained CRDT Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Client Side, Single Copy at Client
Ad Counter 1 Riot Ad Counter 2 Contracts Ads Contracts Ads With Contracts Riot Ads Rovio Ads Filter Product Read 50,000 Remove Increment Read Union Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Client Side, Single Copy at Client 31 Ads Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Riot Ad Counter 2 Contracts Ads Contracts Ads With Contracts Riot Ads Rovio Ads Filter Product Read 50,000 Remove Increment Read Union Lasp Operation User-Maintained CRDT Lasp-Maintained CRDT Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Client Side, Single Copy at Client
Ad Counter 1 Riot Ad Counter 2 Contracts Ads Contracts Ads With Contracts Riot Ads Rovio Ads Filter Product Read 50,000 Remove Increment Read Union Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Client Side, Single Copy at Client 33 Ads Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Riot Ad Counter 2 Contracts Ads Contracts Ads With Contracts Riot Ads Rovio Ads Filter Product Read 50,000 Remove Increment Read Union Lasp Operation User-Maintained CRDT Lasp-Maintained CRDT Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Client Side, Single Copy at Client
all modeled through monotonic state growth • Divergence Divergence is a factor of synchronization period • Arbitrary distribution Use of convergent data structures allows computational graph to be arbitrarily distributed 34
Ad Counter 1 Riot Ad Counter 2 Contracts Ads Contracts Ads With Contracts Riot Ads Rovio Ads Filter Product Read 50,000 Remove Increment Read Union Lasp Operation User-Maintained CRDT Lasp-Maintained CRDT Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Client Side, Single Copy at Client 36 Server/Client Distribution
Ad Counter 1 Riot Ad Counter 2 Contracts Ads Contracts Ads With Contracts Riot Ads Rovio Ads Filter Product Read 50,000 Remove Increment Read Union Lasp Operation User-Maintained CRDT Lasp-Maintained CRDT Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Rovio Ad Counter 1 Rovio Ad Counter 2 Riot Ad Counter 1 Client Side, Single Copy at Client 38 Geo-Replicated Distribution
in the graph to represent objects that have their own replication scheme • Each node in the dataflow graph: • Replicated state machine • Dynamo-style “quorum-intersection” 39
in the graph to represent objects that have their own replication scheme • Each node in the dataflow graph: • Replicated state machine • Dynamo-style “quorum-intersection” • Single value 39
in the graph to represent objects that have their own replication scheme • Each node in the dataflow graph: • Replicated state machine • Dynamo-style “quorum-intersection” • Single value • Epidemic broadcast for data propagation Facilitates distribution of “program state” across nodes in the dataflow graph 39
stored on all nodes • Read operations: • Declare “interest” in a value • Store a continuation to invoke Predicate function on a lattice position • Bind operations (update operations, as well): 41
stored on all nodes • Read operations: • Declare “interest” in a value • Store a continuation to invoke Predicate function on a lattice position • Bind operations (update operations, as well): • Bind a value on each “interested node” This performs a merge with the nodes current value 41
messages Variable state and metadata for declare and bind operations • Bind operations: • Uniquely identify messages Pair of global message identifier and version vector 42
messages Variable state and metadata for declare and bind operations • Bind operations: • Uniquely identify messages Pair of global message identifier and version vector • Incremented by coordinating replica When receiving incoming vector, merge with current vector and advance 42
messages Variable state and metadata for declare and bind operations • Bind operations: • Uniquely identify messages Pair of global message identifier and version vector • Incremented by coordinating replica When receiving incoming vector, merge with current vector and advance • Monotonic state increases per-replica Ignore messages that have been subsumed by later messages 42
Ad). Ad Counter Process • Blocking read of the counter for value 50000 • Records interest in variable Counter • Registers a continuation that will invoke when Counter >= 50000 Continuation
Ad). Ad Counter Process • Blocking read of the counter for value 50000 • Records interest in variable Counter • Registers a continuation that will invoke when Counter >= 50000 • Interest in variable Counter removed Continuation
elements to initial set and update. update(S1, {add, [1,2,3]}), %% Create second set. S2 = declare(set), %% Apply map operation between S1 and S2. map(S1, fun(X) -> X * 2 end, S2).
prototype implementation in Erlang with Lasp and Plumtree • Extensions to increase locality Local variables that do not get distributed • Partial evaluation Can we derive optimized distribution models given dataflow execution graphs? 51
with a model that does not rely on ordering guarantees • Distributed epidemic-based runtime First implementation of a epidemic broadcast based runtime in a general programming model 52