Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning for the noobs
Search
manu rink
March 21, 2018
Programming
1
140
Machine Learning for the noobs
A very quick guide to ML, where you can use your models afterwards in native iOS apps using CoreML
manu rink
March 21, 2018
Tweet
Share
More Decks by manu rink
See All by manu rink
You shall not FaaS
codeprincess
0
2k
Besser leben mit Maschinen?!
codeprincess
0
57
Der Mobile Grabenkampf
codeprincess
0
200
Not smart, just human!
codeprincess
0
110
Fresh and Fruity - the new VS Mobile Center
codeprincess
0
100
The Secret Life of Types in Swift
codeprincess
1
1.4k
Win your mobile game with HockeyApp
codeprincess
0
110
Get back to the playground... emotionally!
codeprincess
0
94
Get rid of your servers - use functions!
codeprincess
3
200
Other Decks in Programming
See All in Programming
大規模アプリのDIフレームワーク刷新戦略 ~過去最大規模の並行開発を止めずにアプリ全体に導入するまで~
mot_techtalk
0
380
プログラマのための作曲入門
cheebow
0
540
CSC305 Lecture 01
javiergs
PRO
1
400
階層構造を表現するデータ構造とリファクタリング 〜1年で10倍成長したプロダクトの変化と課題〜
yuhisatoxxx
3
920
Railsだからできる 例外業務に禍根を残さない 設定設計パターン
ei_ei_eiichi
0
340
Чего вы не знали о строках в Python – Василий Рябов, PythoNN
sobolevn
0
160
アメ車でサンノゼを走ってきたよ!
s_shimotori
0
140
なぜGoのジェネリクスはこの形なのか? Featherweight Goが明かす設計の核心
ryotaros
7
1k
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
140
タスクの特性や不確実性に応じた最適な作業スタイルの選択(ペアプロ・モブプロ・ソロプロ)と実践 / Optimal Work Style Selection: Pair, Mob, or Solo Programming.
honyanya
3
140
ててべんす独演会〜Flowの全てを語ります〜
tbsten
1
220
ABEMAモバイルアプリが Kotlin Multiplatformと歩んだ5年 ─ 導入と運用、成功と課題 / iOSDC 2025
akkyie
0
330
Featured
See All Featured
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
How to Ace a Technical Interview
jacobian
280
24k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
Documentation Writing (for coders)
carmenintech
75
5k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
How to train your dragon (web standard)
notwaldorf
96
6.3k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
20k
Automating Front-end Workflow
addyosmani
1371
200k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
Unsuck your backbone
ammeep
671
58k
The Language of Interfaces
destraynor
162
25k
Transcript
Machine Learning Manuela Rink, Software Engineer, Microsoft for the noob!
None
What… “Recognize handwritten text numbers in an native iOS app
… offline!” … could possibly be so hard?
What do I know about ML?
Python Machine Learning basic knowledge again Python convert data for
model usage some other things – dunno yet? use CoreML to predict correct results I’ll just need a bit of…
Quick tip from a colleague who is totally into ML:
“Just use an SVM with the MNIST digits database to get the model. And don’t forget to tweak it with a decent grid search!”
None
Where do I even get started?
Step 1 “Embrace being the noob – and just run
the code”
Step 2 “Create and train your model - then convert
to CoreML”
Step 3 “Understand what you’ve just created”
Step 4 “Get your input in shape, RLY!”
Prep’ing your data for predictions
Step 5 “Make your prediction – ALL THE RESULTS!”
None
It’s dangerous to go alone… https://github.com/codePrincess/doodlingRecognition +
http://scikit- learn.org/stable/auto_examples/classification/plot_digits_classification.html#sphx-glr-auto- examples-classification-plot-digits-classification-py http://yann.lecun.com/exdb/mnist/ https://developer.apple.com/documentation/coreml/converting_trained_models_to_core_ml ?language=objc https://www.gitbook.com/book/leonardoaraujosantos/artificial-inteligence/details https://docs.microsoft.com/en-us/azure/machine-learning/studio/algorithm-cheat-sheet … and
this
Merci :) Manu Rink Software Engineer
[email protected]
@codeprincess says
[1] Scientific Droid - https://techfinancials.co.za/2017/08/08/future-artificial-intelligence/ [2] Chappie - http://www.newsweek.com/artificial-intelligence-scientists-racist-sexist-robots-ai-693440 [3]
Machine thinking - https://www.sciencenews.org/article/machines-think-predicts-future-artificial-intelligence [4] Headless Human - http://www.ttec.com/sites/default/files/styles/article_main/public/perspectives1.jpg?itok=o4K9k0zs [5] Learning robot - http://robohub.org/wp-content/uploads/2017/01/machine-learning.jpg [6] ML Workbench - https://images.anandtech.com/doci/12508/azure-machine-learning-studio-predictive-score-experiment.png [7] Zelda Sword - http://piq.codeus.net/picture/143569/wooden_sword_the_legend_of_zelda_nes_ [8] Embrance - https://memegenerator.net/instance/51017062/oso-hormiguero-thug-embrace-the-change [9] HeMan - https://www.storegrowers.com/google-analytics-for-ecommerce/ [10] Results - http://www.providentmediagroup.com/blog/testimonials-study-results-and-gift-card-winner/