Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Databricksによるセキュアで効率的なデータエンジニアリングの実現
Search
Databricks Japan
May 10, 2024
Technology
0
430
Databricksによるセキュアで効率的なデータエンジニアリングの実現
Databricks Japan
May 10, 2024
Tweet
Share
More Decks by Databricks Japan
See All by Databricks Japan
[2025年10月版] Databricks Data + AI Boot Camp
databricksjapan
1
280
Microsoft Tech Brief 【2025年10月最新版!】 Fabric & Databricks が導く "未来型 AI Agentic Analytics" の最新アップデートを徹底解説!
databricksjapan
0
240
動画データのポテンシャルを引き出す! Databricks と AI活用への奮闘記(現在進行形)
databricksjapan
1
230
RedshiftからDatabricksに引っ越してみたら、 想像以上に良かった話
databricksjapan
0
210
Azure SynapseからAzure Databricksへ 移行してわかった新時代のコスト問題!?
databricksjapan
0
230
Databricks連携で実現する DWHモダナイゼーション
databricksjapan
0
190
[2025年7月版] AI/BI 最新機能アップデート / AIBI update on July
databricksjapan
0
190
AIもデータも、もっと身近に。Databricksで広がる金融業界の可能性 / FDUA-Study
databricksjapan
0
260
OTFSG勉強会 / Introduction to the History of Delta Lake + Iceberg
databricksjapan
0
300
Other Decks in Technology
See All in Technology
AIがコードを書いてくれるなら、新米エンジニアは何をする? / komekaigi2025
nkzn
22
15k
「タコピーの原罪」から学ぶ間違った”支援” / the bad support of Takopii
piyonakajima
0
160
東京大学「Agile-X」のFPGA AIデザインハッカソンを制したソニーのAI最適化
sony
0
180
【SORACOM UG Explorer 2025】さらなる10年へ ~ SORACOM MVC 発表
soracom
PRO
0
180
datadog-incident-management-intro
tetsuya28
0
110
ViteとTypeScriptのProject Referencesで 大規模モノレポのUIカタログのリリースサイクルを高速化する
shuta13
3
240
アノテーション作業書作成のGood Practice
cierpa0905
PRO
1
330
Amazon Athena で JSON・Parquet・Iceberg のデータを検索し、性能を比較してみた
shigeruoda
1
270
Azure Well-Architected Framework入門
tomokusaba
1
150
ソースを読む時の思考プロセスの例-MkDocs
sat
PRO
1
350
猫でもわかるAmazon Q Developer CLI 解体新書
kentapapa
1
190
AWS re:Invent 2025事前勉強会資料 / AWS re:Invent 2025 pre study meetup
kinunori
0
900
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Building a Scalable Design System with Sketch
lauravandoore
463
33k
Become a Pro
speakerdeck
PRO
29
5.6k
What's in a price? How to price your products and services
michaelherold
246
12k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.5k
Producing Creativity
orderedlist
PRO
348
40k
Speed Design
sergeychernyshev
32
1.2k
The Cult of Friendly URLs
andyhume
79
6.6k
Statistics for Hackers
jakevdp
799
220k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
190
Visualization
eitanlees
150
16k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
10
900
Transcript
Databricksによる セキュアで効率的なデータエ ンジニアリングの実現
山崎 隼也 Yamazaki Junya 株式会社マネーフォワード データ戦略室 データエンジニアリング部 2021年2月にマネーフォワードに入社、全社横 断分析基盤のリプレイスを実施、現在の分析基 盤を作成。 最近は社内のRAG環境のインフラ構築に従事
しています。
目次 - 分析基盤イントロダクション - Databricksの用途 - 前環境の課題点 - セキュリティ要件への対応
- データ利用の最適化 - チューニングされたSparkによるパフォーマンス向上 - 閉塞環境下での工夫 - DevOpsの改善とコード管理 - 効果的な権限管理とリソースの最適化 - 今後の展望 - まとめと要望
分析環境 イントロダクション
分析基盤 全体像 3つの分析環境 - AWS databricks - セキュアな分析環境 - GCP Bigquery
in tokyo - フォーマルな分析環境 - GCP Bigquery in US - カジュアルな分析環境
3つの分析環境 - AWS databricks - セキュアな分析環境 - 論文 - 管理会計
- MLモデル開発 - GCP Bigquery in tokyo - フォーマルな分析環境 - GCP Bigquery in US - カジュアルな分析環境 分析基盤 全体像
Databricksの用途
注釈 https://www.databricks.com/jp/customers/moneyforward ここで触れてます
AWS Cloud AWS account AWS account VDI : : Source
DB Databricksの用途 前環境の課題点
AWS Cloud AWS account AWS account VDI : : Source
DB Squid Domain list Databricksの用途 前環境の課題点 プロキシサーバの管理が大変 • 疎通可能なドメインをホワイトリスト管理 ◦ サービス追加のたびに確認が必要 ◦ 意図しないドメイン変更なども発生
AWS Cloud AWS account AWS account VDI : : Source
DB Databricksの用途 前環境の課題点 データフローが煩雑 • 論文執筆用途で過去断面への 参照用途がある • 煩雑ゆえエラー対応の 工数も多くかかっていた
AWS Cloud AWS account AWS account VDI : : Source
DB Databricksの用途 前環境の課題点 ユーザ環境の管理コストが高い • Jupyter on EMRとAthenaで構築 ◦ リソースとユーザごとの権限管理が必 要 ◦ 単一クラスタのため、各用途最適の環 境を用意することが難しい
AWS account AWS Cloud AWS account Control Plane Data Plane
Notebook : : Source DB VDI Databricksの用途 移行後
AWS account AWS Cloud AWS account Control Plane Data Plane
Notebook : : Source DB VDI Databricksの用途 セキュリティ要件への対応 Squid Domain list 管理ドメインの単一化 • ワークスペースのドメインを許可 ◦ Databricks の各サービスを 利用可能 →メンテナンスフリー →Privatelinkで安心
AWS account AWS Cloud AWS account Control Plane Data Plane
Notebook : : Source DB VDI Squid Domain list Databricksの用途 データ利用の最適化 NotebookをDatabricksで管理 • ユーザ自身でNotebookを自由に ◦ 作成 ◦ 共有 ◦ 秘匿 • またクラスタのRestart権限を付与 することで、使う時間帯だけ立ち上 げる運用が効率化
AWS account AWS Cloud AWS account Control Plane Data Plane
Notebook : : Source DB VDI Squid Domain list Databricksの用途 チューニングされた Sparkによるパフォーマンス向上 ETLをマネージドSpark • バッチ処理が2~3時間 から1時間以内に • Delta化処理が簡単 に
Databricksの用途 移行後 • セキュリティ要件への対応 • データ利用の最適化 • チューニングされたSparkによ るパフォーマンス向上 • クラウドベンダーからの分離によ
るポータビリティ向上
https://www.databricks.com/jp/customers/moneyforward ここで触れてます Databricksの用途 移行後
閉塞環境下での 工夫
AWS account AWS Cloud AWS account Control Plane Data Plane
Notebook : : Source DB VDI 閉塞環境下での工夫 移行後
AWS Cloud AWS account Control Plane Data Plane Notebook :
閉塞環境下での工夫 git連携 Push Github actions Git管理を実現 • Notebook • ETL
AWS account AWS Cloud Control Plane Data Plane Notebook :
VDI 閉塞環境下での工夫 クラスタ管理 SSO Division A Division B Common クラスタ最適化 • ユーザをチーム単位でグ ループ化 • グループ毎にクラスタを 用意 • ユースケースに沿って 調整 ◦ ライブラリ ◦ インスタンスタイプ ◦ スケール数 • Jobクラスタの利用
今後の展望
今後の展望 first scope 閉塞環境からのMLOps → MLflowで生成したモデルをsagemakerエンドポイントでホスティング second scope 全環境でのML環境の提供 →
Databricks on GCPでノウハウを引き継ぎつつ汎用化していく 泥臭い部分はDatabricksをフル活用してユーザ側に滲み出ないように スマートでセキュアなML環境構築の実現を目指しています
まとめと要望
まとめと要望 まとめ • セキュアな分析、ML環境を低運用コストで • ユーザの声を聞く時間ができた • 浮いた時間でユーザビリティの向上 • クラウドベンダーとの依存が切れてポータビリティ向上
要望 • サーバレスのprivate link対応 • unity catalogへの移行を簡単に
We are hiring!