Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Databricksによるセキュアで効率的なデータエンジニアリングの実現
Search
Databricks Japan
May 10, 2024
Technology
0
350
Databricksによるセキュアで効率的なデータエンジニアリングの実現
Databricks Japan
May 10, 2024
Tweet
Share
More Decks by Databricks Japan
See All by Databricks Japan
Databricks連携で実現する DWHモダナイゼーション
databricksjapan
0
19
[2025年7月版] AI/BI 最新機能アップデート / AIBI update on July
databricksjapan
0
57
AIもデータも、もっと身近に。Databricksで広がる金融業界の可能性 / FDUA-Study
databricksjapan
0
150
OTFSG勉強会 / Introduction to the History of Delta Lake + Iceberg
databricksjapan
0
210
[2025年5月版] Azure Databricks最新機能アップデート / 202505 Azure Databricks Latest Updates
databricksjapan
0
240
DatabricksとPower BIの連携メリット / Databricks PowerBI Integration Merits
databricksjapan
1
280
[2025年4月版] Databricks Academy ラボ環境 利用開始手順 / Databricks Academy Labs Onboarding
databricksjapan
2
500
Lakeflow Connectのご紹介
databricksjapan
1
290
MLflowの現在と未来 / MLflow Present and Future
databricksjapan
1
780
Other Decks in Technology
See All in Technology
結局QUICで通信は速くなるの?
kota_yata
5
5.1k
Rubyの国のPerlMonger
anatofuz
3
740
Jamf Connect ZTNAとMDMで実現! 金融ベンチャーにおける「デバイストラスト」実例と軌跡 / Kyash Device Trust
rela1470
1
200
プロダクトエンジニアリングで開発の楽しさを拡張する話
barometrica
0
170
生成AIによるデータサイエンスの変革
taka_aki
0
3k
Google Cloud で学ぶデータエンジニアリング入門 2025年版 #GoogleCloudNext / 20250805
kazaneya
PRO
22
5.2k
ファッションコーディネートアプリ「WEAR」における、Vertex AI Vector Searchを利用したレコメンド機能の開発・運用で得られたノウハウの紹介
zozotech
PRO
0
320
AI時代の大規模データ活用とセキュリティ戦略
ken5scal
0
130
「AIと一緒にやる」が当たり前になるまでの奮闘記
kakehashi
PRO
3
150
Infrastructure as Prompt実装記 〜Bedrock AgentCoreで作る自然言語インフラエージェント〜
yusukeshimizu
1
120
2025新卒研修・HTML/CSS #弁護士ドットコム
bengo4com
3
13k
はじめての転職講座/The Guide of First Career Change
kwappa
4
3.7k
Featured
See All Featured
Balancing Empowerment & Direction
lara
1
540
How GitHub (no longer) Works
holman
314
140k
Making the Leap to Tech Lead
cromwellryan
134
9.5k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Side Projects
sachag
455
43k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
Visualization
eitanlees
146
16k
Typedesign – Prime Four
hannesfritz
42
2.7k
Building an army of robots
kneath
306
45k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
183
54k
Transcript
Databricksによる セキュアで効率的なデータエ ンジニアリングの実現
山崎 隼也 Yamazaki Junya 株式会社マネーフォワード データ戦略室 データエンジニアリング部 2021年2月にマネーフォワードに入社、全社横 断分析基盤のリプレイスを実施、現在の分析基 盤を作成。 最近は社内のRAG環境のインフラ構築に従事
しています。
目次 - 分析基盤イントロダクション - Databricksの用途 - 前環境の課題点 - セキュリティ要件への対応
- データ利用の最適化 - チューニングされたSparkによるパフォーマンス向上 - 閉塞環境下での工夫 - DevOpsの改善とコード管理 - 効果的な権限管理とリソースの最適化 - 今後の展望 - まとめと要望
分析環境 イントロダクション
分析基盤 全体像 3つの分析環境 - AWS databricks - セキュアな分析環境 - GCP Bigquery
in tokyo - フォーマルな分析環境 - GCP Bigquery in US - カジュアルな分析環境
3つの分析環境 - AWS databricks - セキュアな分析環境 - 論文 - 管理会計
- MLモデル開発 - GCP Bigquery in tokyo - フォーマルな分析環境 - GCP Bigquery in US - カジュアルな分析環境 分析基盤 全体像
Databricksの用途
注釈 https://www.databricks.com/jp/customers/moneyforward ここで触れてます
AWS Cloud AWS account AWS account VDI : : Source
DB Databricksの用途 前環境の課題点
AWS Cloud AWS account AWS account VDI : : Source
DB Squid Domain list Databricksの用途 前環境の課題点 プロキシサーバの管理が大変 • 疎通可能なドメインをホワイトリスト管理 ◦ サービス追加のたびに確認が必要 ◦ 意図しないドメイン変更なども発生
AWS Cloud AWS account AWS account VDI : : Source
DB Databricksの用途 前環境の課題点 データフローが煩雑 • 論文執筆用途で過去断面への 参照用途がある • 煩雑ゆえエラー対応の 工数も多くかかっていた
AWS Cloud AWS account AWS account VDI : : Source
DB Databricksの用途 前環境の課題点 ユーザ環境の管理コストが高い • Jupyter on EMRとAthenaで構築 ◦ リソースとユーザごとの権限管理が必 要 ◦ 単一クラスタのため、各用途最適の環 境を用意することが難しい
AWS account AWS Cloud AWS account Control Plane Data Plane
Notebook : : Source DB VDI Databricksの用途 移行後
AWS account AWS Cloud AWS account Control Plane Data Plane
Notebook : : Source DB VDI Databricksの用途 セキュリティ要件への対応 Squid Domain list 管理ドメインの単一化 • ワークスペースのドメインを許可 ◦ Databricks の各サービスを 利用可能 →メンテナンスフリー →Privatelinkで安心
AWS account AWS Cloud AWS account Control Plane Data Plane
Notebook : : Source DB VDI Squid Domain list Databricksの用途 データ利用の最適化 NotebookをDatabricksで管理 • ユーザ自身でNotebookを自由に ◦ 作成 ◦ 共有 ◦ 秘匿 • またクラスタのRestart権限を付与 することで、使う時間帯だけ立ち上 げる運用が効率化
AWS account AWS Cloud AWS account Control Plane Data Plane
Notebook : : Source DB VDI Squid Domain list Databricksの用途 チューニングされた Sparkによるパフォーマンス向上 ETLをマネージドSpark • バッチ処理が2~3時間 から1時間以内に • Delta化処理が簡単 に
Databricksの用途 移行後 • セキュリティ要件への対応 • データ利用の最適化 • チューニングされたSparkによ るパフォーマンス向上 • クラウドベンダーからの分離によ
るポータビリティ向上
https://www.databricks.com/jp/customers/moneyforward ここで触れてます Databricksの用途 移行後
閉塞環境下での 工夫
AWS account AWS Cloud AWS account Control Plane Data Plane
Notebook : : Source DB VDI 閉塞環境下での工夫 移行後
AWS Cloud AWS account Control Plane Data Plane Notebook :
閉塞環境下での工夫 git連携 Push Github actions Git管理を実現 • Notebook • ETL
AWS account AWS Cloud Control Plane Data Plane Notebook :
VDI 閉塞環境下での工夫 クラスタ管理 SSO Division A Division B Common クラスタ最適化 • ユーザをチーム単位でグ ループ化 • グループ毎にクラスタを 用意 • ユースケースに沿って 調整 ◦ ライブラリ ◦ インスタンスタイプ ◦ スケール数 • Jobクラスタの利用
今後の展望
今後の展望 first scope 閉塞環境からのMLOps → MLflowで生成したモデルをsagemakerエンドポイントでホスティング second scope 全環境でのML環境の提供 →
Databricks on GCPでノウハウを引き継ぎつつ汎用化していく 泥臭い部分はDatabricksをフル活用してユーザ側に滲み出ないように スマートでセキュアなML環境構築の実現を目指しています
まとめと要望
まとめと要望 まとめ • セキュアな分析、ML環境を低運用コストで • ユーザの声を聞く時間ができた • 浮いた時間でユーザビリティの向上 • クラウドベンダーとの依存が切れてポータビリティ向上
要望 • サーバレスのprivate link対応 • unity catalogへの移行を簡単に
We are hiring!