de entidades inteligentes (es una ciencia). • Se esfuerza en construir máquinas inteligentes (es una ingeniería). • Máquinas Inteligentes = máquinas capaces de percibir, razonar, aprender, comunicarse y actuar en entornos complejos. • La IA es un área reciente (1956).
que intenta la construcción de algoritmos para imitar el comportamiento y el razonamiento de los humanos. • Inteligencia Artificial es la parte de las Ciencias de la Computación que se ocupa del diseño de sistemas inteligentes, esto es sistemas que exhiben características que asociamos con la inteligencia en las conductas humanas. Feigenbaum y Barr ’80s
la Ciencias de la computación que se ocupa de la automatización de la conducta inteligente. Luger y Stubblefield, 1993 • Es la Ciencia e Ingeniería de hacer máquinas inteligentes (especialmente programas). Esto está relacionado a la tarea de usar computadoras para entender la inteligencia humana, pero IA no tiene que limitarse a métodos que son biológicamente observables. J. Mc Carthy, 1998
humanos. Desarrollar sistemas que actúan como humanos. Desarrollar sistemas que piensan racionalmente. Desarrollar sistemas que actúan racionalmente.
• Incapacidad de diferenciar entre respuestas del ordenador repuestas humanas. • Supondría: o Procesamiento del Lenguaje Natural. o Representación del Conocimiento. o Razonamiento Automático o Aprendizaje Automático.
1950) intenta ofrecer una definición de inteligencia Artificial que se pueda evaluar. Para que un ser o máquina se considere inteligente debe lograr engañar a un evaluador de que este ser o máquina se trata de un humano evaluando todas las actividades de tipo cognoscitivo que puede realizar el ser humano.
de crear sistemas inteligentes utilizando la Lógica Formal. Inconvenientes: Necesaria una representación del conocimiento informal (o difuso). Uso de probabilidades. Explosión combinatoria posibilidades.
Se necesita resolver situaciones, que el pensamiento racional no puede por sí solo hacer: Acciones reflejas: “retirar la mano del fuego”. El estudio de IA como agentes racionales tiene como ventaja: Es más general que el “pensamiento racional”.
Los primeros años estuvieron llenos de éxitos, aunque con ciertas limitaciones. Entusiasmo general y grandes esperanzas. Algunos «hitos»: • Hipótesis del sistema de símbolos físicos. • Lenguaje de alto nivel LISP. • Generador de consejos. • Micromundos, destacando el mundo de los bloques. • RNs como adalines o perceptrones. ...Pero aún así las predicciones muy optimistas se chocaron con una realidad difícil de modelar y excesivamente compleja en muchos casos: traducción, búsqueda de soluciones genérica, la explosión
conocimiento 1966-1973) Hasta este momento la investigación en IA estaba centrada en el desarrollo de mecanismos de búsqueda de propósito general métodos débiles. • Alternativa: uso de conocimiento específico del dominio que facilita el desarrollo de etapas de razonamiento más largas, pudiendo así resolver casos recurrentes en dominios de conocimiento restringido: DENDRAL
conocimiento 1966-1973) sistemas expertos. Surge esta nueva metodología que puede aplicarse a distintas áreas de la actividad humana. Muy empleado en diagnóstico médico: MYCIN. Se incorporan también los factores de certeza.
hasta el presente) Primer sistema experto comercial con éxito: R1 por Digital Equipment Corporation. En 1981 los japoneses anunciaron su proyecto «Quinta Generación». Los EEUU constituyeron el MCC (Microelectronics and Computer Technology Corporation).
hasta el presente) Ninguno cumplió completamente sus objetivos, mientras que Reino Unido se restaura el patrocinio/subvención. La industria de la IA creció rápidamente, pasando de unos pocos millones de dólares en 1980 a billones de dólares en 1988. Poco después llegó la época llamada «El invierno de la IA».
más usual el desarrollo de teorías ya existentes y trabaja también en demostrar la utilidad de las aplicaciones en el mundo real. • La IA ya forma parte del ámbito de los métodos científicos.
se produce un regreso de las redes neuronales, y este enfoque denominado conexionista convivirá con otros diferentes. Recientemente ha habido una revolución en el campo de la IA tanto en el contenido como en la metodología de trabajo.
naturaleza para resolver (cierto tipo de) problemas complejos. • Millones de años de evolución han llevado a que los sistemas biológicos posean características y mecanismos de procesamiento que los diferencian radicalmente de los computadores tradicionales (arquitectura Von Neumann).
mecanismos de procesamiento de los sistemas biológicos. Entre los sistemas inteligentes destacan las Redes Neuronales (Redes de Neuronas Artificiales) y la Lógica Difusa.