y0 y1 yT ¯ u ¯ v unk,t |unk,t 1 ⇠ N ( unk,t 1 , 2 u) | ⇠ N vmk,t |vmk,t 1 ⇠ N ( vmk,t 1 , 2 v) ynm,t ⇠ Poisson ( P K k =1 e( unk,t+¯ unk)e( vmk,t+¯ vmk) ) · · · · · · µu, u µ¯ u, ¯ u µ¯ v, ¯ v µv, v global factor global factor
21822 0.0062 0.186 PF-all [6] 0.032 22402 0.0056 0.182 PF-last [6] 0.023 25616 0.0040 0.168 Table 3: Performance of dPF versus baselines on arXiv. Bold num- bers indicate the top performance for each metric. [ Figure 2: dPF performs well across a large range of variances (2– 50) by MRR in a pilot study of a single timestep of the arXiv data. Computational Complexity Machine Learning & Information Theory Quantum Computing Community Detection Monte Carlo & Simulation Probability & Statistics for Graphs Computational Geometry Information Theory Mathematical Statistics Computability Classes Physics & Society Quantum Information Theory Quantum Logic Quantum Algorithms General Interest CS Graph Theory Information Theory Message Passing Algorithms Condensed Matter & Computing Network Analysis 04/05 10/05 04/06 04/07 04/08 04/09 04/10 04/11 03/12 10/06 10/07 10/08 10/09 10/10 10/11 0.0 0.2 0.4 0.6 0.8 1.0 Figure 3: Evolution of latent factors, corresponding to research ar- eas, as discovered by dPF from the raw click data. We see that network analysis has been a growing area of research in computer science over the past decade. Table Bold dPF d PF-a erenc 3.5 Ther we h to ex can b date arXiv In tors u from mode ϨʔςΟϯάਫ਼্ ࣌ؒใͷॏཁੑΛࣔࠦ ਤදݪจΑΓҾ༻ arXiv-cs-statsʹ͓͚Δ20ݸͷજࡏมͷ࣌ؒൃల ݚڀख़͍ͯͯ͠େมಈͳ͍͕NetworkͳͲ৳ு