Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20190223_nlpaperchallenge_CV_4.3to5.5
Search
yoppe
February 23, 2019
Science
2
830
20190223_nlpaperchallenge_CV_4.3to5.5
Presentation at
https://nlpaper-challenge.connpass.com/event/118557/
.
yoppe
February 23, 2019
Tweet
Share
More Decks by yoppe
See All by yoppe
20211023_recsys2021_paper_reading_YoheiKikuta
diracdiego
2
490
20201121_oldpaperreading_computing_machinery_and_intelligence
diracdiego
0
170
20200906_ACL2020_metric_for_ordinal_classification_YoheiKikuta
diracdiego
1
1.3k
20191102_ACL2019_adversarial_examples_in_NLP_YoheiKIKUTA
diracdiego
2
1.4k
20180701_CVPR2018_reading_YoheiKIKUTA
diracdiego
3
1.2k
20180414_WSDM2018_reading_YoheiKIKUTA
diracdiego
0
720
20180306_NIPS2017_DeepLearning
diracdiego
4
5.9k
20180215_MLKitchen7_YoheiKIKUTA
diracdiego
0
440
20180210_Cookpad_TechConf2018_YoheiKIKUTA
diracdiego
5
1.2k
Other Decks in Science
See All in Science
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
990
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
190
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
690
Celebrate UTIG: Staff and Student Awards 2025
utig
0
280
研究って何だっけ / What is Research?
ks91
PRO
1
140
風の力で振れ幅が大きくなる振り子!? 〜タコマナローズ橋はなぜ落ちたのか〜
syotasasaki593876
1
110
Machine Learning for Materials (Challenge)
aronwalsh
0
350
Hakonwa-Quaternion
hiranabe
1
140
データベース03: 関係データモデル
trycycle
PRO
1
280
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
150
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.1k
Transport information Geometry: Current and Future II
lwc2017
0
210
Featured
See All Featured
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Designing for Performance
lara
610
69k
KATA
mclloyd
PRO
32
15k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Scaling GitHub
holman
463
140k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
658
61k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
116
20k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
4 Signs Your Business is Dying
shpigford
185
22k
A designer walks into a library…
pauljervisheath
209
24k
Optimizing for Happiness
mojombo
379
70k
Transcript
ୈ2ճ nlpaper.challenge NLP/CV ަྲྀษڧձ ը૾ೝࣝ ୈ4.3ষ~ୈ5.5ষ 20190223 Yohei KIKUTA
ࣗݾհ • Twitter ID @yohei_kikuta • Resume • ࠷ۙୀ৬ͯ͠ແ৬ʹͳΓ·ͨ͠ ϒϩάΤϯτϦ
ແ৬ͱͯ͠Έ͍ͨਓ͓͕͚͍ͩ͘͞ʂ ΫοΫύουྑ͍ձࣾͳͷͰస৬͍ͨ͠ਓͥͻͲ͏ͧʂ
ଟ༷ମֶश͚ͩৄ͘͠Γ·͢ • ը૾ೝࣝ ຊͷ 4.3~5.5 Λൃද • ہॴಛʹ͔ؔͯ͠ͳΓߴີͰ࣌ؒʹ͖͠Εͳ͍ ଟ༷ମֶश ΧʔωϧؔۙࣅʢಛʹͦͷͨΊͷجૅ͕ࣝॏ͍ʣ
ͦͷ΄͔༷ʑͳ • શମͷ·ͱΊͱུ֓Λہॴಛͷ෦Λܰ͘આ໌ͨ͠ޙɺଟ ༷ମֶशΛৄ͘͠આ໌ Q. ͳͥଟ༷ମֶशͳͷ͔ʁ A. ͕ࣗগ͠ਅ໘ʹษڧͯ͠Έ͔͔ͨͬͨΒ
4.3~4.6 ͷ·ͱΊ ہॴಛͰࣦΘΕۭͨؒใΛ༩ͨ͠Γ͢Δʢ4.6ʣ
5.1~5.5 ͷ·ͱΊ ʢ֬తʣޯ߱Լ๏χϡʔτϯ๏Ͱύϥϝλ w Λֶश
ہॴಛΛ༻͍ͨ࠶ߏங ͜Ε݁ہͲͷล͕ଟ༷ମͳͷ͔ʁ ͱ͍͏͕ฉ͖͑ͯͦ͜͏͕ͩɺͦΕޙͰগ͠ৄ͘͠આ໌
ಛࣸ૾ʹΑΔΧʔωϧͷۙࣅ ػցֶशʹଌ͍Δͷʁͱ͍͏ٙΛ࣋ͭਓ Mercer’s theorem ͱ͔ Bochner’s theorem ͱ͔Λݟ·͠ΐ͏
ۭؒใͷ׆༻ • ϓʔϦϯάʹΑࣦͬͯΘΕΔҐஔใΛखͰՃ͑Δ • ہॴهड़ࢠͷҐஔεέʔϧΛՃ͑Δ • ہॴهड़ࢠͷࣗݾ૬ؔߦྻͷཁૉΛՃ͑Δ • spatial pyramid
ϓʔϦϯάޙͷಛʹۭؒใΛ༩
ଟ༷ମֶश ଟ༷ମֶशʹͯ͠গ͠ৄ͘͠આ໌͢Δʢݸਓతڵຯʣ આ໌͢ΔͷҎԼͷτϐοΫɿ • ͦͦଟ༷ମͱʁʢֶతʹݫີͳ͠ͳ͍ʣ • ଟ༷ମֶशʹࢸΔϞνϕʔγϣϯ • Ұͭͷྫͱͯ͠ہॴ࠲ඪ coding
ͷվળͷจΛհ [140] K. Yu, T. Zhang. Improved local coordinate coding using local tangents. In ICML, 2010.
ଟ༷ମͱʁ ہॴతʹ Euclid ۭؒͰهड़Ͱ͖ΔਤΛషΓ߹ΘͤͯදͤΔ ྫʣද໘Λߟ͑Δ ※ Φ ͱ Θ ͚ͩͰ࠲ඪܥషΓ͖Εͳ͍ʢશͳٿͰͳ͍ʣ
ہॴతʢզʑͷৗεέʔϧʣʹ Euclid ࠲ඪͰهड़Ͱ͖Δ ͦͷ࠲ඪΛషΓ߹ΘͤΕද໘શମΛΧόʔͰ͖Δ ͦͷΑ͏ͳషΓ߹ΘͤͷใͰ 3 ࣍ݩͷٿͷใٞՄ
ଟ༷ମͱʁ σʔλͷॅΉۭؒಉ͡Α͏ͳͷͩͱ૾͞ΕΔ ͜ͷΑ͏ͳঢ়گͰɺྫ͑ೋؒͷڑΛଌΔͱ͖ʹߴ࣍ݩۭ ؒͰͷ Euclid ڑෆద͔͠Εͳ͍ → ଟ༷ମʹԊͬͯڑΛଌΔํ͕ੑ࣭Λଊ͑ΒΕͦ͏ʢଌઢʣ → ใزԿʹ͓͚Δࣗવޯ๏ͳͲ͜ΕΛ͍ͬͯΔ
ଟ༷ମֶशʹࢸΔಈػ • ࣍ݩͷढ͍ͷճආ ྫʣσʔλେྔʹ͋Ε kNN Ͱ͍͍͡ΌΜ → μϝͰ͢ • σʔλͷ༗͢ΔಛΛΑΓྑ͘Ѳ
ઌ΄ͲͷྫͷΑ͏ʹ୯ͳΔ Euclid ڑ͕ෆద͔͠Εͳ͍ ྫʣࣗવޯ๏ɺt-SNE • ༷ʑͳΞϓϩʔν͔Β৽ͨͳݟ͕ಘΒΕΔ͔ ඍزԿతͳΞϓϩʔνʢہॴతʣˠ େମͷͬͪ͜ Ґ૬زԿతͳΞϓϩʔνʢେҬతʣˠ ࠓ৮Εͳ͍
ʢิʣ࣍ݩͷढ͍ • ಛྔͷ࣍ݩ͕େ͖͗͢Δ߹ Ϟσϧ͕ෳࡶ͗ͯ͢దʹֶशͰ͖ͳ͍ • σʔλۭؒͷ࣍ݩ͕େ͖͗͢Δ߹ ྫͱͯ͠ΫϥελϦϯάΛߟ͑Δ ٿ໘ूதݱʹΑΓɺҟͳΔؒͷڑ͕͘͠ͳ͍ͬͯ͘ ݁Ռͱͯ͠ A
͔Βݟͯ B C ΄΅ಉ͡Ͱ۠ผෆՄ ʢ࣍ݩͷढ͍ͷ ͡Ίͯͷύλʔϯೝࣝ ͕ৄ͍͠ʣ
ଟ༷ମֶशͷྫ ہॴ࠲ඪ coding Λվળ͢Δ͜ͱΛߟ͑Δ K. Yu, T. Zhang. Improved local
coordinate coding using local tangents. In ICML, 2010. ࠷ऴతͳඪσʔλ͕͢ଟ༷ମͷࡏతͳ࣍ݩʢPCA Ͱٻ ΊΔʣΛߟྀ͠ɺͦͷใΛͬͯ coding Λิਖ਼
४උ
ہॴ࠲ඪ coding ʹΑΔۙࣅ
(4.79) ࣜͷূ໌
ہॴ࠲ඪ coding ͷֶश๏
֦ுہॴ࠲ඪ coding
σʔλଟ༷ମͷఆٛ
ہॴಛ coding with u ূ໌ུʢઌ΄Ͳͷূ໌͕͔ͬͯΕ͘͠ͳ͍ʣ u (local) PCA ͳͲͰٻΊɺm
खͰܾΊΔύϥϝλ c(M) ؔʹ͓͚ΔϦϓγοπఆʹ૬ ॏཁͳͷ c(M) ͕খ͍͞߹ʹ bound ͕Ωπ͘ͳΔͱ͍͏͜ͱ → ͜Εখ͞ͳྖҬͰσʔλଟ༷ମ͕ flat ͳߏͰ͋Δ߹ → “ఆੑత” ͳԾఆͰ flat Ͱͳͯ͘༗ޮͳ߹͋ΓಘΔ
ֶशΞϧΰϦζϜ จͷΞϧΰϦζϜࡌͤΔʢs, m hyperparameterʣ
࣮ݧ݁ՌɿMNIST Cross validation ʹΑΓ s = 0, m = 64
୯७ͳہॴಛ coding ͱൺΔͱ anchor ͕গͳͯ͘ྑ͍
࣮ݧ݁ՌɿCIFAR10 Cross validation ʹΑΓ s = 10, m = 256
ͪ͜Β anchor ͕গͳͯ͘ྑ͍݁ՌΛ͍ࣔͯ͠Δ
ଟ༷ମֶशʹཱͭ • σʔλͷߏΛ͏·͘ଊ͑ͯ༗༻ͳಛྔΛ࡞Εͨ • ہॴੑʹΛ͠ͳ͕Βߴ࣍ݩใΛ࣍ݩͰۙࣅ • ࣮ࡍʹࣝผੑೳ্͕ • σΟʔϓϥʔχϯάͰଟ༷ମֶशڵຯਂ͍τϐοΫ ใزԿ
ϦʔϚϯଟ༷ମ্ͰֶशΛఆࣜԽ …
4.3~4.6 ͷ·ͱΊʢ࠶ܝʣ ہॴಛͰࣦΘΕۭͨؒใΛ༩ͨ͠Γ͢Δʢ4.6ʣ