Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20190223_nlpaperchallenge_CV_4.3to5.5
Search
yoppe
February 23, 2019
Science
2
840
20190223_nlpaperchallenge_CV_4.3to5.5
Presentation at
https://nlpaper-challenge.connpass.com/event/118557/
.
yoppe
February 23, 2019
Tweet
Share
More Decks by yoppe
See All by yoppe
20211023_recsys2021_paper_reading_YoheiKikuta
diracdiego
2
500
20201121_oldpaperreading_computing_machinery_and_intelligence
diracdiego
0
170
20200906_ACL2020_metric_for_ordinal_classification_YoheiKikuta
diracdiego
1
1.3k
20191102_ACL2019_adversarial_examples_in_NLP_YoheiKIKUTA
diracdiego
2
1.4k
20180701_CVPR2018_reading_YoheiKIKUTA
diracdiego
3
1.3k
20180414_WSDM2018_reading_YoheiKIKUTA
diracdiego
0
730
20180306_NIPS2017_DeepLearning
diracdiego
4
5.9k
20180215_MLKitchen7_YoheiKIKUTA
diracdiego
0
460
20180210_Cookpad_TechConf2018_YoheiKIKUTA
diracdiego
5
1.2k
Other Decks in Science
See All in Science
データマイニング - コミュニティ発見
trycycle
PRO
0
190
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.2k
俺たちは本当に分かり合えるのか? ~ PdMとスクラムチームの “ずれ” を科学する
bonotake
2
680
機械学習 - DBSCAN
trycycle
PRO
0
1.4k
Collective Predictive Coding as a Unified Theory for the Socio-Cognitive Human Minds
tanichu
0
150
データベース08: 実体関連モデルとは?
trycycle
PRO
0
1k
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
1.1k
Vibecoding for Product Managers
ibknadedeji
0
120
主成分分析に基づく教師なし特徴抽出法を用いたコラーゲン-グリコサミノグリカンメッシュの遺伝子発現への影響
tagtag
PRO
0
170
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
920
サイコロで理解する原子核崩壊と拡散現象 〜単純化されたモデルで本質を理解する〜
syotasasaki593876
0
140
KH Coderチュートリアル(スライド版)
koichih
1
56k
Featured
See All Featured
Measuring & Analyzing Core Web Vitals
bluesmoon
9
720
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
690
How to Align SEO within the Product Triangle To Get Buy-In & Support - #RIMC
aleyda
1
1.4k
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
400
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
280
Building Adaptive Systems
keathley
44
2.9k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
Music & Morning Musume
bryan
46
7k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
84
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
93
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
110
Transcript
ୈ2ճ nlpaper.challenge NLP/CV ަྲྀษڧձ ը૾ೝࣝ ୈ4.3ষ~ୈ5.5ষ 20190223 Yohei KIKUTA
ࣗݾհ • Twitter ID @yohei_kikuta • Resume • ࠷ۙୀ৬ͯ͠ແ৬ʹͳΓ·ͨ͠ ϒϩάΤϯτϦ
ແ৬ͱͯ͠Έ͍ͨਓ͓͕͚͍ͩ͘͞ʂ ΫοΫύουྑ͍ձࣾͳͷͰస৬͍ͨ͠ਓͥͻͲ͏ͧʂ
ଟ༷ମֶश͚ͩৄ͘͠Γ·͢ • ը૾ೝࣝ ຊͷ 4.3~5.5 Λൃද • ہॴಛʹ͔ؔͯ͠ͳΓߴີͰ࣌ؒʹ͖͠Εͳ͍ ଟ༷ମֶश ΧʔωϧؔۙࣅʢಛʹͦͷͨΊͷجૅ͕ࣝॏ͍ʣ
ͦͷ΄͔༷ʑͳ • શମͷ·ͱΊͱུ֓Λہॴಛͷ෦Λܰ͘આ໌ͨ͠ޙɺଟ ༷ମֶशΛৄ͘͠આ໌ Q. ͳͥଟ༷ମֶशͳͷ͔ʁ A. ͕ࣗগ͠ਅ໘ʹษڧͯ͠Έ͔͔ͨͬͨΒ
4.3~4.6 ͷ·ͱΊ ہॴಛͰࣦΘΕۭͨؒใΛ༩ͨ͠Γ͢Δʢ4.6ʣ
5.1~5.5 ͷ·ͱΊ ʢ֬తʣޯ߱Լ๏χϡʔτϯ๏Ͱύϥϝλ w Λֶश
ہॴಛΛ༻͍ͨ࠶ߏங ͜Ε݁ہͲͷล͕ଟ༷ମͳͷ͔ʁ ͱ͍͏͕ฉ͖͑ͯͦ͜͏͕ͩɺͦΕޙͰগ͠ৄ͘͠આ໌
ಛࣸ૾ʹΑΔΧʔωϧͷۙࣅ ػցֶशʹଌ͍Δͷʁͱ͍͏ٙΛ࣋ͭਓ Mercer’s theorem ͱ͔ Bochner’s theorem ͱ͔Λݟ·͠ΐ͏
ۭؒใͷ׆༻ • ϓʔϦϯάʹΑࣦͬͯΘΕΔҐஔใΛखͰՃ͑Δ • ہॴهड़ࢠͷҐஔεέʔϧΛՃ͑Δ • ہॴهड़ࢠͷࣗݾ૬ؔߦྻͷཁૉΛՃ͑Δ • spatial pyramid
ϓʔϦϯάޙͷಛʹۭؒใΛ༩
ଟ༷ମֶश ଟ༷ମֶशʹͯ͠গ͠ৄ͘͠આ໌͢Δʢݸਓతڵຯʣ આ໌͢ΔͷҎԼͷτϐοΫɿ • ͦͦଟ༷ମͱʁʢֶతʹݫີͳ͠ͳ͍ʣ • ଟ༷ମֶशʹࢸΔϞνϕʔγϣϯ • Ұͭͷྫͱͯ͠ہॴ࠲ඪ coding
ͷվળͷจΛհ [140] K. Yu, T. Zhang. Improved local coordinate coding using local tangents. In ICML, 2010.
ଟ༷ମͱʁ ہॴతʹ Euclid ۭؒͰهड़Ͱ͖ΔਤΛషΓ߹ΘͤͯදͤΔ ྫʣද໘Λߟ͑Δ ※ Φ ͱ Θ ͚ͩͰ࠲ඪܥషΓ͖Εͳ͍ʢશͳٿͰͳ͍ʣ
ہॴతʢզʑͷৗεέʔϧʣʹ Euclid ࠲ඪͰهड़Ͱ͖Δ ͦͷ࠲ඪΛషΓ߹ΘͤΕද໘શମΛΧόʔͰ͖Δ ͦͷΑ͏ͳషΓ߹ΘͤͷใͰ 3 ࣍ݩͷٿͷใٞՄ
ଟ༷ମͱʁ σʔλͷॅΉۭؒಉ͡Α͏ͳͷͩͱ૾͞ΕΔ ͜ͷΑ͏ͳঢ়گͰɺྫ͑ೋؒͷڑΛଌΔͱ͖ʹߴ࣍ݩۭ ؒͰͷ Euclid ڑෆద͔͠Εͳ͍ → ଟ༷ମʹԊͬͯڑΛଌΔํ͕ੑ࣭Λଊ͑ΒΕͦ͏ʢଌઢʣ → ใزԿʹ͓͚Δࣗવޯ๏ͳͲ͜ΕΛ͍ͬͯΔ
ଟ༷ମֶशʹࢸΔಈػ • ࣍ݩͷढ͍ͷճආ ྫʣσʔλେྔʹ͋Ε kNN Ͱ͍͍͡ΌΜ → μϝͰ͢ • σʔλͷ༗͢ΔಛΛΑΓྑ͘Ѳ
ઌ΄ͲͷྫͷΑ͏ʹ୯ͳΔ Euclid ڑ͕ෆద͔͠Εͳ͍ ྫʣࣗવޯ๏ɺt-SNE • ༷ʑͳΞϓϩʔν͔Β৽ͨͳݟ͕ಘΒΕΔ͔ ඍزԿతͳΞϓϩʔνʢہॴతʣˠ େମͷͬͪ͜ Ґ૬زԿతͳΞϓϩʔνʢେҬతʣˠ ࠓ৮Εͳ͍
ʢิʣ࣍ݩͷढ͍ • ಛྔͷ࣍ݩ͕େ͖͗͢Δ߹ Ϟσϧ͕ෳࡶ͗ͯ͢దʹֶशͰ͖ͳ͍ • σʔλۭؒͷ࣍ݩ͕େ͖͗͢Δ߹ ྫͱͯ͠ΫϥελϦϯάΛߟ͑Δ ٿ໘ूதݱʹΑΓɺҟͳΔؒͷڑ͕͘͠ͳ͍ͬͯ͘ ݁Ռͱͯ͠ A
͔Βݟͯ B C ΄΅ಉ͡Ͱ۠ผෆՄ ʢ࣍ݩͷढ͍ͷ ͡Ίͯͷύλʔϯೝࣝ ͕ৄ͍͠ʣ
ଟ༷ମֶशͷྫ ہॴ࠲ඪ coding Λվળ͢Δ͜ͱΛߟ͑Δ K. Yu, T. Zhang. Improved local
coordinate coding using local tangents. In ICML, 2010. ࠷ऴతͳඪσʔλ͕͢ଟ༷ମͷࡏతͳ࣍ݩʢPCA Ͱٻ ΊΔʣΛߟྀ͠ɺͦͷใΛͬͯ coding Λิਖ਼
४උ
ہॴ࠲ඪ coding ʹΑΔۙࣅ
(4.79) ࣜͷূ໌
ہॴ࠲ඪ coding ͷֶश๏
֦ுہॴ࠲ඪ coding
σʔλଟ༷ମͷఆٛ
ہॴಛ coding with u ূ໌ུʢઌ΄Ͳͷূ໌͕͔ͬͯΕ͘͠ͳ͍ʣ u (local) PCA ͳͲͰٻΊɺm
खͰܾΊΔύϥϝλ c(M) ؔʹ͓͚ΔϦϓγοπఆʹ૬ ॏཁͳͷ c(M) ͕খ͍͞߹ʹ bound ͕Ωπ͘ͳΔͱ͍͏͜ͱ → ͜Εখ͞ͳྖҬͰσʔλଟ༷ମ͕ flat ͳߏͰ͋Δ߹ → “ఆੑత” ͳԾఆͰ flat Ͱͳͯ͘༗ޮͳ߹͋ΓಘΔ
ֶशΞϧΰϦζϜ จͷΞϧΰϦζϜࡌͤΔʢs, m hyperparameterʣ
࣮ݧ݁ՌɿMNIST Cross validation ʹΑΓ s = 0, m = 64
୯७ͳہॴಛ coding ͱൺΔͱ anchor ͕গͳͯ͘ྑ͍
࣮ݧ݁ՌɿCIFAR10 Cross validation ʹΑΓ s = 10, m = 256
ͪ͜Β anchor ͕গͳͯ͘ྑ͍݁ՌΛ͍ࣔͯ͠Δ
ଟ༷ମֶशʹཱͭ • σʔλͷߏΛ͏·͘ଊ͑ͯ༗༻ͳಛྔΛ࡞Εͨ • ہॴੑʹΛ͠ͳ͕Βߴ࣍ݩใΛ࣍ݩͰۙࣅ • ࣮ࡍʹࣝผੑೳ্͕ • σΟʔϓϥʔχϯάͰଟ༷ମֶशڵຯਂ͍τϐοΫ ใزԿ
ϦʔϚϯଟ༷ମ্ͰֶशΛఆࣜԽ …
4.3~4.6 ͷ·ͱΊʢ࠶ܝʣ ہॴಛͰࣦΘΕۭͨؒใΛ༩ͨ͠Γ͢Δʢ4.6ʣ