Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20190223_nlpaperchallenge_CV_4.3to5.5
Search
yoppe
February 23, 2019
Science
2
840
20190223_nlpaperchallenge_CV_4.3to5.5
Presentation at
https://nlpaper-challenge.connpass.com/event/118557/
.
yoppe
February 23, 2019
Tweet
Share
More Decks by yoppe
See All by yoppe
20211023_recsys2021_paper_reading_YoheiKikuta
diracdiego
2
500
20201121_oldpaperreading_computing_machinery_and_intelligence
diracdiego
0
170
20200906_ACL2020_metric_for_ordinal_classification_YoheiKikuta
diracdiego
1
1.3k
20191102_ACL2019_adversarial_examples_in_NLP_YoheiKIKUTA
diracdiego
2
1.4k
20180701_CVPR2018_reading_YoheiKIKUTA
diracdiego
3
1.3k
20180414_WSDM2018_reading_YoheiKIKUTA
diracdiego
0
730
20180306_NIPS2017_DeepLearning
diracdiego
4
5.9k
20180215_MLKitchen7_YoheiKIKUTA
diracdiego
0
460
20180210_Cookpad_TechConf2018_YoheiKIKUTA
diracdiego
5
1.2k
Other Decks in Science
See All in Science
学術講演会中央大学学員会府中支部
tagtag
PRO
0
340
先端因果推論特別研究チームの研究構想と 人間とAIが協働する自律因果探索の展望
sshimizu2006
3
670
会社でMLモデルを作るとは @電気通信大学 データアントレプレナーフェロープログラム
yuto16
1
480
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
1k
データベース10: 拡張実体関連モデル
trycycle
PRO
0
1k
凸最適化からDC最適化まで
santana_hammer
1
350
DMMにおけるABテスト検証設計の工夫
xc6da
1
1.4k
Accelerated Computing for Climate forecast
inureyes
PRO
0
140
中央大学AI・データサイエンスセンター 2025年第6回イブニングセミナー 『知能とはなにか ヒトとAIのあいだ』
tagtag
PRO
0
100
データベース08: 実体関連モデルとは?
trycycle
PRO
0
1k
デジタルアーカイブの教育利用促進を目指したメタデータLOD基盤に関する研究 / Research on a Metadata LOD Platform for Promoting Educational Uses of Digital Archives
masao
0
130
Ignite の1年間の軌跡
ktombow
0
200
Featured
See All Featured
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.3k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
39
Un-Boring Meetings
codingconduct
0
170
Amusing Abliteration
ianozsvald
0
81
It's Worth the Effort
3n
187
29k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
110
Game over? The fight for quality and originality in the time of robots
wayneb77
1
74
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
30 Presentation Tips
portentint
PRO
1
180
The SEO Collaboration Effect
kristinabergwall1
0
320
Chasing Engaging Ingredients in Design
codingconduct
0
93
Designing Powerful Visuals for Engaging Learning
tmiket
0
190
Transcript
ୈ2ճ nlpaper.challenge NLP/CV ަྲྀษڧձ ը૾ೝࣝ ୈ4.3ষ~ୈ5.5ষ 20190223 Yohei KIKUTA
ࣗݾհ • Twitter ID @yohei_kikuta • Resume • ࠷ۙୀ৬ͯ͠ແ৬ʹͳΓ·ͨ͠ ϒϩάΤϯτϦ
ແ৬ͱͯ͠Έ͍ͨਓ͓͕͚͍ͩ͘͞ʂ ΫοΫύουྑ͍ձࣾͳͷͰస৬͍ͨ͠ਓͥͻͲ͏ͧʂ
ଟ༷ମֶश͚ͩৄ͘͠Γ·͢ • ը૾ೝࣝ ຊͷ 4.3~5.5 Λൃද • ہॴಛʹ͔ؔͯ͠ͳΓߴີͰ࣌ؒʹ͖͠Εͳ͍ ଟ༷ମֶश ΧʔωϧؔۙࣅʢಛʹͦͷͨΊͷجૅ͕ࣝॏ͍ʣ
ͦͷ΄͔༷ʑͳ • શମͷ·ͱΊͱུ֓Λہॴಛͷ෦Λܰ͘આ໌ͨ͠ޙɺଟ ༷ମֶशΛৄ͘͠આ໌ Q. ͳͥଟ༷ମֶशͳͷ͔ʁ A. ͕ࣗগ͠ਅ໘ʹษڧͯ͠Έ͔͔ͨͬͨΒ
4.3~4.6 ͷ·ͱΊ ہॴಛͰࣦΘΕۭͨؒใΛ༩ͨ͠Γ͢Δʢ4.6ʣ
5.1~5.5 ͷ·ͱΊ ʢ֬తʣޯ߱Լ๏χϡʔτϯ๏Ͱύϥϝλ w Λֶश
ہॴಛΛ༻͍ͨ࠶ߏங ͜Ε݁ہͲͷล͕ଟ༷ମͳͷ͔ʁ ͱ͍͏͕ฉ͖͑ͯͦ͜͏͕ͩɺͦΕޙͰগ͠ৄ͘͠આ໌
ಛࣸ૾ʹΑΔΧʔωϧͷۙࣅ ػցֶशʹଌ͍Δͷʁͱ͍͏ٙΛ࣋ͭਓ Mercer’s theorem ͱ͔ Bochner’s theorem ͱ͔Λݟ·͠ΐ͏
ۭؒใͷ׆༻ • ϓʔϦϯάʹΑࣦͬͯΘΕΔҐஔใΛखͰՃ͑Δ • ہॴهड़ࢠͷҐஔεέʔϧΛՃ͑Δ • ہॴهड़ࢠͷࣗݾ૬ؔߦྻͷཁૉΛՃ͑Δ • spatial pyramid
ϓʔϦϯάޙͷಛʹۭؒใΛ༩
ଟ༷ମֶश ଟ༷ମֶशʹͯ͠গ͠ৄ͘͠આ໌͢Δʢݸਓతڵຯʣ આ໌͢ΔͷҎԼͷτϐοΫɿ • ͦͦଟ༷ମͱʁʢֶతʹݫີͳ͠ͳ͍ʣ • ଟ༷ମֶशʹࢸΔϞνϕʔγϣϯ • Ұͭͷྫͱͯ͠ہॴ࠲ඪ coding
ͷվળͷจΛհ [140] K. Yu, T. Zhang. Improved local coordinate coding using local tangents. In ICML, 2010.
ଟ༷ମͱʁ ہॴతʹ Euclid ۭؒͰهड़Ͱ͖ΔਤΛషΓ߹ΘͤͯදͤΔ ྫʣද໘Λߟ͑Δ ※ Φ ͱ Θ ͚ͩͰ࠲ඪܥషΓ͖Εͳ͍ʢશͳٿͰͳ͍ʣ
ہॴతʢզʑͷৗεέʔϧʣʹ Euclid ࠲ඪͰهड़Ͱ͖Δ ͦͷ࠲ඪΛషΓ߹ΘͤΕද໘શମΛΧόʔͰ͖Δ ͦͷΑ͏ͳషΓ߹ΘͤͷใͰ 3 ࣍ݩͷٿͷใٞՄ
ଟ༷ମͱʁ σʔλͷॅΉۭؒಉ͡Α͏ͳͷͩͱ૾͞ΕΔ ͜ͷΑ͏ͳঢ়گͰɺྫ͑ೋؒͷڑΛଌΔͱ͖ʹߴ࣍ݩۭ ؒͰͷ Euclid ڑෆద͔͠Εͳ͍ → ଟ༷ମʹԊͬͯڑΛଌΔํ͕ੑ࣭Λଊ͑ΒΕͦ͏ʢଌઢʣ → ใزԿʹ͓͚Δࣗવޯ๏ͳͲ͜ΕΛ͍ͬͯΔ
ଟ༷ମֶशʹࢸΔಈػ • ࣍ݩͷढ͍ͷճආ ྫʣσʔλେྔʹ͋Ε kNN Ͱ͍͍͡ΌΜ → μϝͰ͢ • σʔλͷ༗͢ΔಛΛΑΓྑ͘Ѳ
ઌ΄ͲͷྫͷΑ͏ʹ୯ͳΔ Euclid ڑ͕ෆద͔͠Εͳ͍ ྫʣࣗવޯ๏ɺt-SNE • ༷ʑͳΞϓϩʔν͔Β৽ͨͳݟ͕ಘΒΕΔ͔ ඍزԿతͳΞϓϩʔνʢہॴతʣˠ େମͷͬͪ͜ Ґ૬زԿతͳΞϓϩʔνʢେҬతʣˠ ࠓ৮Εͳ͍
ʢิʣ࣍ݩͷढ͍ • ಛྔͷ࣍ݩ͕େ͖͗͢Δ߹ Ϟσϧ͕ෳࡶ͗ͯ͢దʹֶशͰ͖ͳ͍ • σʔλۭؒͷ࣍ݩ͕େ͖͗͢Δ߹ ྫͱͯ͠ΫϥελϦϯάΛߟ͑Δ ٿ໘ूதݱʹΑΓɺҟͳΔؒͷڑ͕͘͠ͳ͍ͬͯ͘ ݁Ռͱͯ͠ A
͔Βݟͯ B C ΄΅ಉ͡Ͱ۠ผෆՄ ʢ࣍ݩͷढ͍ͷ ͡Ίͯͷύλʔϯೝࣝ ͕ৄ͍͠ʣ
ଟ༷ମֶशͷྫ ہॴ࠲ඪ coding Λվળ͢Δ͜ͱΛߟ͑Δ K. Yu, T. Zhang. Improved local
coordinate coding using local tangents. In ICML, 2010. ࠷ऴతͳඪσʔλ͕͢ଟ༷ମͷࡏతͳ࣍ݩʢPCA Ͱٻ ΊΔʣΛߟྀ͠ɺͦͷใΛͬͯ coding Λิਖ਼
४උ
ہॴ࠲ඪ coding ʹΑΔۙࣅ
(4.79) ࣜͷূ໌
ہॴ࠲ඪ coding ͷֶश๏
֦ுہॴ࠲ඪ coding
σʔλଟ༷ମͷఆٛ
ہॴಛ coding with u ূ໌ུʢઌ΄Ͳͷূ໌͕͔ͬͯΕ͘͠ͳ͍ʣ u (local) PCA ͳͲͰٻΊɺm
खͰܾΊΔύϥϝλ c(M) ؔʹ͓͚ΔϦϓγοπఆʹ૬ ॏཁͳͷ c(M) ͕খ͍͞߹ʹ bound ͕Ωπ͘ͳΔͱ͍͏͜ͱ → ͜Εখ͞ͳྖҬͰσʔλଟ༷ମ͕ flat ͳߏͰ͋Δ߹ → “ఆੑత” ͳԾఆͰ flat Ͱͳͯ͘༗ޮͳ߹͋ΓಘΔ
ֶशΞϧΰϦζϜ จͷΞϧΰϦζϜࡌͤΔʢs, m hyperparameterʣ
࣮ݧ݁ՌɿMNIST Cross validation ʹΑΓ s = 0, m = 64
୯७ͳہॴಛ coding ͱൺΔͱ anchor ͕গͳͯ͘ྑ͍
࣮ݧ݁ՌɿCIFAR10 Cross validation ʹΑΓ s = 10, m = 256
ͪ͜Β anchor ͕গͳͯ͘ྑ͍݁ՌΛ͍ࣔͯ͠Δ
ଟ༷ମֶशʹཱͭ • σʔλͷߏΛ͏·͘ଊ͑ͯ༗༻ͳಛྔΛ࡞Εͨ • ہॴੑʹΛ͠ͳ͕Βߴ࣍ݩใΛ࣍ݩͰۙࣅ • ࣮ࡍʹࣝผੑೳ্͕ • σΟʔϓϥʔχϯάͰଟ༷ମֶशڵຯਂ͍τϐοΫ ใزԿ
ϦʔϚϯଟ༷ମ্ͰֶशΛఆࣜԽ …
4.3~4.6 ͷ·ͱΊʢ࠶ܝʣ ہॴಛͰࣦΘΕۭͨؒใΛ༩ͨ͠Γ͢Δʢ4.6ʣ