Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
20180414_WSDM2018_reading_YoheiKIKUTA
Search
yoppe
April 12, 2018
Science
0
720
20180414_WSDM2018_reading_YoheiKIKUTA
HP:
https://atnd.org/events/95510
yoppe
April 12, 2018
Tweet
Share
More Decks by yoppe
See All by yoppe
20211023_recsys2021_paper_reading_YoheiKikuta
diracdiego
2
480
20201121_oldpaperreading_computing_machinery_and_intelligence
diracdiego
0
160
20200906_ACL2020_metric_for_ordinal_classification_YoheiKikuta
diracdiego
1
1.3k
20191102_ACL2019_adversarial_examples_in_NLP_YoheiKIKUTA
diracdiego
2
1.4k
20190223_nlpaperchallenge_CV_4.3to5.5
diracdiego
2
830
20180701_CVPR2018_reading_YoheiKIKUTA
diracdiego
3
1.2k
20180306_NIPS2017_DeepLearning
diracdiego
4
5.9k
20180215_MLKitchen7_YoheiKIKUTA
diracdiego
0
440
20180210_Cookpad_TechConf2018_YoheiKIKUTA
diracdiego
5
1.2k
Other Decks in Science
See All in Science
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
320
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
Celebrate UTIG: Staff and Student Awards 2025
utig
0
150
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
180
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
960
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
130
03_草原和博_広島大学大学院人間社会科学研究科教授_デジタル_シティズンシップシティで_新たな_学び__をつくる.pdf
sip3ristex
0
590
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
1.5k
ウェブ・ソーシャルメディア論文読み会 第25回: Differences in misinformation sharing can lead to politically asymmetric sanctions (Nature, 2024)
hkefka385
0
130
Hakonwa-Quaternion
hiranabe
1
120
地表面抽出の方法であるSMRFについて紹介
kentaitakura
1
860
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
620
Featured
See All Featured
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
A Modern Web Designer's Workflow
chriscoyier
696
190k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
How to train your dragon (web standard)
notwaldorf
96
6.2k
The Language of Interfaces
destraynor
160
25k
It's Worth the Effort
3n
187
28k
Making the Leap to Tech Lead
cromwellryan
134
9.5k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
The Straight Up "How To Draw Better" Workshop
denniskardys
236
140k
KATA
mclloyd
32
14k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
111
20k
Transcript
Why People Search for Images using Web Search Engines WSDM
2018 จಡΈձ 20180414 ٠ా ངฏ (@yohei_kikuta) Event URL: https://atnd.org/events/95510, paper: https://arxiv.org/abs/1711.09559
·ͱΊ 1. text base ͷΣϒը૾ݕࡧͷҙਤྨՄೳ͔ʁ → YES. 3ͭʹྨ: Entertain, Explore/Learn,
Locate/Acquire 2. औಘՄೳͳಛྔ͔ΒҙਤΛผͰ͖Δ͔ʁ → YES. ཹ࣌ؒϚεδΣενϟ 3. ηογϣϯॳظͰݕࡧҙਤΛ༧ଌͰ͖Δ͔ → MAYBE. ಛྔΛͬͯϞσϧΛ࡞ͯ͠Ұఆͷੑೳ 2
എܠ 3
ݕࡧͷҙਤΛΓ͍ͨ Ϣʔβͷݕࡧߦಈͷཪʹ͋ΔҙਤΛΔ͜ͱॏཁ → Ϣʔβͷຬ্ʢsuggestion, recommendation, ...ʣ Σϒݕࡧͷݚڀͳ͞Ε͖͕ͯͨɺը૾ݕࡧʹؔͯ͠ݶఆత → ΫΤϦϕʔε →
͔͠͠ը૾ݕࡧͷΫΤϦ͘ͳΓ͕ͪͰෆ࣮֬ੑ͕େ͖͍ ຊจͰηογϣϯใΛѻͬͯը૾ݕࡧͷҙਤΛݚڀ 4
ຊจʹ͓͚ΔϦαʔνΫΤενϣϯ 1. text base ͷΣϒը૾ݕࡧͷҙਤྨՄೳ͔ʁ 2. औಘՄೳͳಛྔ͔ΒҙਤΛผͰ͖Δ͔ʁ 3. ηογϣϯॳظͰݕࡧҙਤΛ༧ଌͰ͖Δ͔ 5
ઌߦݚڀ 6
Σϒݕࡧʹ͓͚Δҙਤͷ taxonomy A taxonomy of web search (2002) ͰҙਤΛ3ͭʹྨ 1.
Navigational: ಛఆͷαΠτ౸ୡ 2. Informational: ใͷऔಘ 3. Transactional: ΣϒΛഔհͱͨ͠׆ಈ Ref: https://dl.acm.org/citation.cfm?id=792552 7
Σϒݕࡧʹ͓͚Δҙਤͷ taxonomy Task Behaviors During Web Search: The Difficulty of
Assigning Labels (2009) ͰݕࡧλεΫΛ7ͭʹྨ » Navigate, Find-Simple, Find-Complex, Locate/Acquire, Explore/Learn, Play, Meta ຊจ͜ͷઌߦݚڀΛ౿ऻͭͭ͠ը૾ݕࡧʹൃలͤͨ͞ͷɺͱ͍͏ ৭߹͍͕ڧ͍ Ref: http://ieeexplore.ieee.org/document/4755491/ 8
ը૾ݕࡧͷҙਤΛྨ 9
Ξϓϩʔν σʔλΛूΊͯͦΕΛجʹ3ਓͷΣϒݚڀऀ͕ྨ » ϢʔβͷΞϯέʔτσʔλ » ੑผใͳͲΛऔಘ » ࠷ۙͷݕࡧʹؔ͢ΔৄࡉʢಈػͳͲʣɺ༻ͨ͠ΫΤϦ » దͳճΛͨ͠211ਓ͕ର
10
Ξϓϩʔν σʔλΛूΊͯͦΕΛجʹ3ਓͷΣϒݚڀऀ͕ྨ » ϩάσʔλ » https://www.sogou.com/ ͷϩάσʔλ » 30Ҏʹ࿈ଓతͳΫΤϦΛ༩͍͑ͯΔ475ηογϣϯʢআ͘Ξμ ϧτʣ
11
Ξϓϩʔν σʔλΛूΊͯͦΕΛجʹ3ਓͷΣϒݚڀऀ͕ྨ » ϩάσʔλʢlength ΫΤϦʣ Ref: https://arxiv.org/abs/1711.09559 12
࡞ͨ͠அج४ 1. Ϣʔβͷݕࡧߦಈ໌֬ͳతʹґΔͷ͔ʁ 2. ޙͷར༻ͷͨΊʹը૾Λμϯϩʔυ͢Δඞཁ͕͋Δ͔ʁ 13
3ͭͷݕࡧҙਤ 1. Explore/Learn (1-yes, 2-no) ྫʣΰϦϥͱϘϊϘͷݟͨͷҧ͍ΛνΣοΫ 2. Locate/Acquire (1-yes, 2-yes)
ྫʣϨϙʔτ࡞Ͱ͏ΰϦϥͷը૾Λ୳ͯ͠μϯϩʔυ 3. Entertain (1-no, 2-yes or no) ྫʣΰϦϥͷ໘നը૾ΛோΊΔ 14
3ͭͷݕࡧҙਤʢྫʣ Ref: https://arxiv.org/abs/1711.09559 15
ଥੑͷݕূʢ3ਓͷେֶӃੜʹΑΔҙਤྨʣ » ϢʔβͷΞϯέʔτσʔλ Fleiss' kappa: 0.673 Explore/Learn: 27%, Locate/Acquire: 66%,
Entertain: 7% » ϩάσʔλʢΫΤϦͷΈΛ༻ʣ Fleiss' kappa: 0.375 Explore/Learn: 56%, Locate/Acquire: 39%, Entertain: 5% ͏·͚͘Εͦ͏͕ͩΫΤϦͷΈͰҙਤΛΉͷ͍͠ 16
औಘՄೳͳಛྔͰҙਤΛผ 17
35ਓͷֶ෦ੜʹΑΔ12ݸͷը૾ݕࡧλεΫ ྫʣPCͷഎܠΛ੨ۭͱͷը૾ʹมߋʢLocate/Acquireʣ ͦͷࡍʹҎԼͷಛྔΛऔಘ Ref: https://arxiv.org/abs/1711.09559 18
ҙਤʹΑͬͯ༗ҙͳ͕ࠩग़ΔͷͰผՄೳ ఀཹ࣌ؒ E/L ͕ଟ͍ɺϚεΫϦοΫ E/L < L/A < EɺͳͲ ʢৄࡉจΛࢀরʣ
Ref: https://arxiv.org/abs/1711.09559 19
ηογϣϯॳظͰͷҙਤͷ༧ଌ 20
ઃఆ ηογϣϯॳظͱʮ࠷ॳͷϚεεΫϩʔϧ͕͋Δ·Ͱʯ ༧ଌͰ͏ feature ͱͯ͠ҎԼͷҙ - ΫϦοΫͱ࠷ॳͷϚεΦʔόʔ࣌ؒΘͳ͍ - ΫΤϦϕʔεͰΓ͍ͨͷͰ query
reformulation Θͳ͍ ֶ෦ੜʹղ͔ͤͨը૾ݕࡧλεΫʹରͯ͠ GBDT Ͱ 10-fold CV 21
༧ଌੑೳߴ͘ͳ͍͕ෆՄೳͰͳͦ͞͏ Baseline majority ʹશ෦دͤΔͱ͍͏ͷ Ref: https://arxiv.org/abs/1711.09559 22
·ͱΊͱॴײ 23
·ͱΊʢ࠶ܝʣ 1. text base ͷΣϒը૾ݕࡧͷҙਤྨՄೳ͔ʁ → YES. 3ͭʹྨ: Entertain, Explore/Learn,
Locate/Acquire 2. औಘՄೳͳಛྔ͔ΒҙਤΛผͰ͖Δ͔ʁ → YES. ཹ࣌ؒϚεδΣενϟ 3. ηογϣϯॳظͰݕࡧҙਤΛ༧ଌͰ͖Δ͔ → MAYBE. ಛྔΛͬͯϞσϧΛ࡞ͯ͠Ұఆͷੑೳ 24
ॴײ » γϯϓϧͳج४ͰྨΛ͍ͯ͠Δͱ͍͏ͷྑ͍ » ৽ͱ͍͏Θ͚Ͱͳ͍͕ҰͭҰ͔ͭͬ͠Γௐ͍ͯΔ » ࣮αʔϏεͷԠ༻ʹҰาඈ༂͕ඞཁͦ͏ʢ༧ଌੑೳͳͲʣ » ٱʑʹࣜΛશવΘͳ͍จΛಡΜͰ৽ͩͬͨ 25