Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ゼロから作るDeepLearning 第7章前半ざっくりまとめ
Search
dproject21
February 20, 2017
Science
0
960
ゼロから作るDeepLearning 第7章前半ざっくりまとめ
dproject21
February 20, 2017
Tweet
Share
More Decks by dproject21
See All by dproject21
ISTQB/JSTQBシラバスから学ぶAgileTesting / A guide of agile testing based on ISTQB syllabus
dproject21
4
3.3k
JSTQB Advanced Level 模擬問題作成方法 / methodology to questions creation for JSTQB advanced level
dproject21
3
1.3k
試験に絶対出ないJSTQB AL TA,TM問題 / Questions that will never be given on the exam of JSTQB advanced level
dproject21
0
1.4k
The official zip code book is terrible. And what should I do with the address you wrote.
dproject21
0
160
TDD applied Data Cleansing
dproject21
0
1.8k
Data preprocessing for MachineLearning/BI by Golang and MySQL UDF
dproject21
1
840
高精度名寄せシステムを支える テキスト処理 (の、ほんのさわり)
dproject21
3
2.4k
ゼロから作るDeepLearning 第5章 誤差逆伝播法による重み更新を追ってみる
dproject21
0
1.1k
ゼロから作るDeepLearning 第6章ざっくりまとめ
dproject21
2
1.3k
Other Decks in Science
See All in Science
事業会社における 機械学習・推薦システム技術の活用事例と必要な能力 / ml-recsys-in-layerx-wantedly-2024
yuya4
3
230
2024-06-16-pydata_london
sofievl
0
530
統計的因果探索の方法
sshimizu2006
1
1.2k
マテリアルズ・インフォマティクスの先端で起きていること / What's Happening at the Cutting Edge of Materials Informatics
snhryt
1
130
大規模言語モデルの開発
chokkan
PRO
84
33k
重複排除・高速バックアップ・ランサムウェア対策 三拍子そろったExaGrid × Veeam連携セミナー
climbteam
0
110
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
160
いまAI組織が求める企画開発エンジニアとは?
roadroller
2
1.3k
作業領域内の障害物を回避可能なバイナリマニピュレータの設計 / Design of binary manipulator avoiding obstacles in workspace
konakalab
0
160
Science of Scienceおよび科学計量学に関する研究論文の俯瞰可視化_ポスター版
hayataka88
0
130
ultraArmをモニター提供してもらった話
miura55
0
190
はじめての「相関と因果とエビデンス」入門:“動機づけられた推論” に抗うために
takehikoihayashi
17
6.8k
Featured
See All Featured
The Art of Programming - Codeland 2020
erikaheidi
52
13k
Gamification - CAS2011
davidbonilla
80
5k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.1k
The Invisible Side of Design
smashingmag
298
50k
Become a Pro
speakerdeck
PRO
25
5k
KATA
mclloyd
29
14k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
31
2.7k
Six Lessons from altMBA
skipperchong
27
3.5k
Code Reviewing Like a Champion
maltzj
520
39k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
1.9k
Transcript
「ゼロから作るDeepLearning」 第7章前半ざっくりまとめ (7.3章「プーリング」まで) 2017.2.20 たのっち @dproject21
この本のざっくりまとめです • 「ゼロから作るDeepLearning」斎藤 康毅 著 オライリー・ジャパンより2016年9⽉ 発⾏ https://www.oreilly.co.jp/books/9784873117584/ • 公式サポートページ
https://github.com/oreilly-japan/deep-learning-from-scratch • 第7章「畳み込みニューラルネットワーク」前半部です。 (後半の実装については、次回、資料作ります。) https://deeplearning-yokohama.connpass.com/
第6章までやってきたニューラルネットワークは、 1次元データ(⽩⿊データ)を扱うのに向いていた。 畳み込みニューラルネットワークとは ⼊⼒ データ Affine ReLU Affine ReLU Affine
ReLU Affine Softmax 第7章で取り上げる畳み込みニューラルネットワークは、 3次元データ(カラー画像データ)を扱えるニューラルネットワーク。 ⼊⼒ データ Conv ReLU Pooling ReLU Affine Softmax Conv ReLU Pooling Conv ReLU Affine
畳み込みニューラルネットワークとは 畳み込みニューラルネットワークでは、 ・3次元データを扱う「畳み込み層(Convolutionレイヤ)」 ・特徴抽出を⾏う「プーリング層(Poolingレイヤ)」 が新たに加わる。 ・前半ではConv-ReLU-(Pooling)の組み合わせを⽤いる ・出⼒に近い層ではAffine-ReLUの組み合わせを⽤いる ・出⼒層ではAffine-Softmaxの組み合わせを⽤いる ⼊⼒ データ
Conv ReLU Pooling ReLU Affine Softmax Conv ReLU Pooling Conv ReLU Affine
畳み込み層とは 「畳み込み演算」(画像処理で⾔うところの「フィルタ演算」)を⾏う。 ⼊⼒データ(4, 4)に対してフィルタ(3, 3)の積和演算を⾏う。 1 2 3 0 0
1 2 3 3 0 1 2 2 3 0 1 2 0 1 0 1 2 1 0 2 ⊛ 15 16 6 15 ⼊⼒データ フィルタ 出⼒
畳み込み層とは 1 2 3 0 0 1 2 3 3
0 1 2 2 3 0 1 2 0 1 0 1 2 1 0 2 ⊛ 15 16 6 15 1 2 3 0 0 1 2 3 3 0 1 2 2 3 0 1 2 0 1 0 1 2 1 0 2 ⊛ 15 16 6 15 ⼊⼒データに対して、フィルタを⼀定の間隔でスライドさせながら、 演算を⾏う。
畳み込み層とは 1 2 3 0 0 1 2 3 3
0 1 2 2 3 0 1 2 0 1 0 1 2 1 0 2 ⊛ 15 16 6 15 1 2 3 0 0 1 2 3 3 0 1 2 2 3 0 1 2 0 1 0 1 2 1 0 2 ⊛ 15 16 6 15 ⼊⼒データに対して、フィルタを⼀定の間隔でスライドさせながら、 演算を⾏う。
畳み込み層とは バイアスは、フィルタ適⽤後のデータに対して加算する。 1 2 3 0 0 1 2 3
3 0 1 2 2 3 0 1 2 0 1 0 1 2 1 0 2 ⊛ 15 16 6 15 ⼊⼒データ フィルタ 出⼒ + 18 19 9 18 3 バイアス
畳み込み層とは 出⼒サイズを整えるために「パディング」を⽤いる。 ⼊⼒データの周囲を固定データ(0など)で埋める。 畳み込み演算を何度も⾏うとサイズが⼩さくなっていき、演算不能な状態に なっていく。これを回避するためにパディングを持ちいる。 1 2 3 0 0
1 2 3 3 0 1 2 2 3 0 1 2 0 1 0 1 2 1 0 2 ⊛ ⼊⼒データ フィルタ 出⼒ 7 12 10 2 4 15 16 10 10 6 15 6 8 10 4 3
畳み込み層とは フィルタの移動間隔を「ストライド」と呼ぶ。 ストライドを⼤きくすると、出⼒サイズは⼩さくなる。 パディングを⼤きくすると、出⼒サイズは⼤きくなる。 1 2 3 0 0 1
2 3 3 0 1 2 2 3 0 1 2 0 1 0 1 2 1 0 2 ⊛ ⼊⼒データ フィルタ 出⼒ 7 12 10 2 4 15 16 10 10 6 15 6 8 10 4 3
畳み込み層とは 3次元データの畳み込みを⾏う際は、チャンネルの数だけフィルタを⽤意して、 畳込み演算を⾏う。 ⊛ ⼊⼒データ フィルタ 出⼒
畳み込み層とは 各チャンネルごとに出⼒(特徴マップ)を⽤意したい場合、複数のフィルタを ⽤いる。 ⊛ ⼊⼒データ フィルタ 出⼒
プーリング層とは プーリングは縦・横⽅向の空間を⼩さくする演算。 あるサイズ(ここでは2×2)の領域から最⼤値を取って集約していく。 ※最⼤値だけでなく平均も扱えるが、画像認識の場合は主に最⼤値で⾏う。 1 2 3 0 0 1
2 3 3 0 1 2 2 3 0 1 2 1 2 3 0 0 1 2 3 3 0 1 2 2 3 0 1 2 3 4 1 2 3 0 0 1 2 3 3 0 1 2 2 3 0 1 2 3 1 2 3 0 0 1 2 3 3 0 1 2 2 3 0 1 2 3 4 2