Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Personalised Recommendations
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Edward Tsech
August 09, 2014
Programming
1
67
Personalised Recommendations
Edward Tsech
August 09, 2014
Tweet
Share
More Decks by Edward Tsech
See All by Edward Tsech
Clojure, Web and Luminus
edtsech
1
220
Other Decks in Programming
See All in Programming
OCaml 5でモダンな並列プログラミングを Enjoyしよう!
haochenx
0
140
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
6
1.8k
Fragmented Architectures
denyspoltorak
0
150
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
190
Implementation Patterns
denyspoltorak
0
280
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
700
KIKI_MBSD Cybersecurity Challenges 2025
ikema
0
1.3k
AI時代の認知負荷との向き合い方
optfit
0
150
メルカリのリーダビリティチームが取り組む、AI時代のスケーラブルな品質文化
cloverrose
2
510
CSC307 Lecture 01
javiergs
PRO
0
690
OSSとなったswift-buildで Xcodeのビルドを差し替えられるため 自分でXcodeを直せる時代になっている ダイアモンド問題編
yimajo
3
610
AI時代のキャリアプラン「技術の引力」からの脱出と「問い」へのいざない / tech-gravity
minodriven
20
7k
Featured
See All Featured
Designing for Timeless Needs
cassininazir
0
130
Rebuilding a faster, lazier Slack
samanthasiow
85
9.4k
Code Review Best Practice
trishagee
74
20k
HDC tutorial
michielstock
1
370
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
3
3k
Joys of Absence: A Defence of Solitary Play
codingconduct
1
290
Information Architects: The Missing Link in Design Systems
soysaucechin
0
770
How to Ace a Technical Interview
jacobian
281
24k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
エンジニアに許された特別な時間の終わり
watany
106
230k
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
170
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
220
Transcript
Personalised Recommendations Saturday 9 August 14
About me • Ed Tsech • Clojure, JavaScript developer •
@edtsech on twitter, github Saturday 9 August 14
Content • Collaborative filtering • User based • Item based
• Content based / knowledge based recommendations • Mahout • Movie Recommender Example Saturday 9 August 14
Collaborative Filtering • “Collaborative filtering is a method of making
automatic predictions (filtering) about the interests of a user by collecting preferences or taste information from many users (collaborating).” Saturday 9 August 14
Collaborative Filtering • Last.fm, Twitter, Amazon • Pros • Relatively
precise, ability to recommend items from different categories • Cons • Cold start problem Saturday 9 August 14
User-based Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Item-based Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Algorithms • Euclidean distance • Pearson Correlation • Tanimoto Coefficient
• ... Saturday 9 August 14
Euclidean distance Saturday 9 August 14
Pearson Correlation Saturday 9 August 14
Pearson vs Euclidean Saturday 9 August 14
Tanimoto Coefficient Saturday 9 August 14
Other Algorithms • Log-likelihood • Slope one • Singular value
decomposition • K nearest neighbors • Cluster-based Saturday 9 August 14
Content Based • Prismatic • Pros • No cold start
problem, ability to recommender new items • Cons • Harder to implement, not so precise, sometimes stupid. Saturday 9 August 14
Hybrid Systems • Netflix • Mix collaborative filtering & content-based
recommendations • Knowledge-based • Add domain information Saturday 9 August 14
Mahout • Scalable machine learning library • User based recommenders
• Item based recommenders • Various algorithms • Evaluation & rescoring features • Hadoop integration Saturday 9 August 14
Reca • Thin Clojure wrapper for Mahout’s single- machine recommendation
algorithms • https://github.com/edtsech/reca Saturday 9 August 14
Movie App Demo • 8400000 ratings • 1.7 Gb database
• 162 037 users • 82 715 movies Saturday 9 August 14
Rescoring • Add application logic to the recommender • Add
domain specific information • Helps to make a hybrid recommender Saturday 9 August 14
Evaluation Evaluation of user based algorithm based on 3% of
whole ratings (y axis - average difference) Saturday 9 August 14
Evaluation Evaluation of item based algorithm based on 33% of
whole ratings (y axis - average difference) Saturday 9 August 14
Performance • 1.5Gb of memory • 250 msecs for user
based recommender • 60-90 secs for item based recommender • 0.1 msecs after caching Saturday 9 August 14
Links • Mahout in Action [book] • Collective intelligence [book]
• http://mahout.apache.org/ • http://blog.comsysto.com/2013/04/03/ background-of-collaborative-filtering-with- mahout/ Saturday 9 August 14