Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Personalised Recommendations
Search
Edward Tsech
August 09, 2014
Programming
1
67
Personalised Recommendations
Edward Tsech
August 09, 2014
Tweet
Share
More Decks by Edward Tsech
See All by Edward Tsech
Clojure, Web and Luminus
edtsech
1
220
Other Decks in Programming
See All in Programming
izumin5210のプロポーザルのネタ探し #tskaigi_msup
izumin5210
1
110
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
170
Vibe Coding - AI 驅動的軟體開發
mickyp100
0
170
余白を設計しフロントエンド開発を 加速させる
tsukuha
7
2.1k
CSC307 Lecture 01
javiergs
PRO
0
690
MUSUBIXとは
nahisaho
0
130
Honoを使ったリモートMCPサーバでAIツールとの連携を加速させる!
tosuri13
1
180
Apache Iceberg V3 and migration to V3
tomtanaka
0
160
AgentCoreとHuman in the Loop
har1101
5
230
Basic Architectures
denyspoltorak
0
670
[KNOTS 2026登壇資料]AIで拡張‧交差する プロダクト開発のプロセス および携わるメンバーの役割
hisatake
0
280
AIによる高速開発をどう制御するか? ガードレール設置で開発速度と品質を両立させたチームの事例
tonkotsuboy_com
7
2.3k
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Building the Perfect Custom Keyboard
takai
2
680
Typedesign – Prime Four
hannesfritz
42
2.9k
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
110
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
30 Presentation Tips
portentint
PRO
1
210
エンジニアに許された特別な時間の終わり
watany
106
230k
Why Our Code Smells
bkeepers
PRO
340
58k
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
49
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.2k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
62
49k
Test your architecture with Archunit
thirion
1
2.1k
Transcript
Personalised Recommendations Saturday 9 August 14
About me • Ed Tsech • Clojure, JavaScript developer •
@edtsech on twitter, github Saturday 9 August 14
Content • Collaborative filtering • User based • Item based
• Content based / knowledge based recommendations • Mahout • Movie Recommender Example Saturday 9 August 14
Collaborative Filtering • “Collaborative filtering is a method of making
automatic predictions (filtering) about the interests of a user by collecting preferences or taste information from many users (collaborating).” Saturday 9 August 14
Collaborative Filtering • Last.fm, Twitter, Amazon • Pros • Relatively
precise, ability to recommend items from different categories • Cons • Cold start problem Saturday 9 August 14
User-based Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Item-based Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Algorithms • Euclidean distance • Pearson Correlation • Tanimoto Coefficient
• ... Saturday 9 August 14
Euclidean distance Saturday 9 August 14
Pearson Correlation Saturday 9 August 14
Pearson vs Euclidean Saturday 9 August 14
Tanimoto Coefficient Saturday 9 August 14
Other Algorithms • Log-likelihood • Slope one • Singular value
decomposition • K nearest neighbors • Cluster-based Saturday 9 August 14
Content Based • Prismatic • Pros • No cold start
problem, ability to recommender new items • Cons • Harder to implement, not so precise, sometimes stupid. Saturday 9 August 14
Hybrid Systems • Netflix • Mix collaborative filtering & content-based
recommendations • Knowledge-based • Add domain information Saturday 9 August 14
Mahout • Scalable machine learning library • User based recommenders
• Item based recommenders • Various algorithms • Evaluation & rescoring features • Hadoop integration Saturday 9 August 14
Reca • Thin Clojure wrapper for Mahout’s single- machine recommendation
algorithms • https://github.com/edtsech/reca Saturday 9 August 14
Movie App Demo • 8400000 ratings • 1.7 Gb database
• 162 037 users • 82 715 movies Saturday 9 August 14
Rescoring • Add application logic to the recommender • Add
domain specific information • Helps to make a hybrid recommender Saturday 9 August 14
Evaluation Evaluation of user based algorithm based on 3% of
whole ratings (y axis - average difference) Saturday 9 August 14
Evaluation Evaluation of item based algorithm based on 33% of
whole ratings (y axis - average difference) Saturday 9 August 14
Performance • 1.5Gb of memory • 250 msecs for user
based recommender • 60-90 secs for item based recommender • 0.1 msecs after caching Saturday 9 August 14
Links • Mahout in Action [book] • Collective intelligence [book]
• http://mahout.apache.org/ • http://blog.comsysto.com/2013/04/03/ background-of-collaborative-filtering-with- mahout/ Saturday 9 August 14