Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Personalised Recommendations
Search
Edward Tsech
August 09, 2014
Programming
1
65
Personalised Recommendations
Edward Tsech
August 09, 2014
Tweet
Share
More Decks by Edward Tsech
See All by Edward Tsech
Clojure, Web and Luminus
edtsech
1
220
Other Decks in Programming
See All in Programming
Software Architecture
hschwentner
6
2.1k
AWS Organizations で実現する、 マルチ AWS アカウントのルートユーザー管理からの脱却
atpons
0
130
Grafana Loki によるサーバログのコスト削減
mot_techtalk
1
120
Amazon ECS とマイクロサービスから考えるシステム構成
hiyanger
2
520
お前もAI鬼にならないか?👹Bolt & Cursor & Supabase & Vercelで人間をやめるぞ、ジョジョー!👺
taishiyade
5
3.9k
Immutable ActiveRecord
megane42
0
140
Rails アプリ地図考 Flush Cut
makicamel
1
110
Open source software: how to live long and go far
gaelvaroquaux
0
630
Linux && Docker 研修/Linux && Docker training
forrep
24
4.5k
パスキーのすべて ── 導入・UX設計・実装の紹介 / 20250213 パスキー開発者の集い
kuralab
3
730
ISUCON14公式反省会LT: 社内ISUCONの話
astj
PRO
0
190
XStateを用いた堅牢なReact Components設計~複雑なClient Stateをシンプルに~ @React Tokyo ミートアップ #2
kfurusho
1
870
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
21
2.5k
Producing Creativity
orderedlist
PRO
343
39k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
Unsuck your backbone
ammeep
669
57k
Practical Orchestrator
shlominoach
186
10k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
12
960
Why Our Code Smells
bkeepers
PRO
336
57k
Building Flexible Design Systems
yeseniaperezcruz
328
38k
Raft: Consensus for Rubyists
vanstee
137
6.8k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.3k
How to Ace a Technical Interview
jacobian
276
23k
Transcript
Personalised Recommendations Saturday 9 August 14
About me • Ed Tsech • Clojure, JavaScript developer •
@edtsech on twitter, github Saturday 9 August 14
Content • Collaborative filtering • User based • Item based
• Content based / knowledge based recommendations • Mahout • Movie Recommender Example Saturday 9 August 14
Collaborative Filtering • “Collaborative filtering is a method of making
automatic predictions (filtering) about the interests of a user by collecting preferences or taste information from many users (collaborating).” Saturday 9 August 14
Collaborative Filtering • Last.fm, Twitter, Amazon • Pros • Relatively
precise, ability to recommend items from different categories • Cons • Cold start problem Saturday 9 August 14
User-based Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Item-based Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Algorithms • Euclidean distance • Pearson Correlation • Tanimoto Coefficient
• ... Saturday 9 August 14
Euclidean distance Saturday 9 August 14
Pearson Correlation Saturday 9 August 14
Pearson vs Euclidean Saturday 9 August 14
Tanimoto Coefficient Saturday 9 August 14
Other Algorithms • Log-likelihood • Slope one • Singular value
decomposition • K nearest neighbors • Cluster-based Saturday 9 August 14
Content Based • Prismatic • Pros • No cold start
problem, ability to recommender new items • Cons • Harder to implement, not so precise, sometimes stupid. Saturday 9 August 14
Hybrid Systems • Netflix • Mix collaborative filtering & content-based
recommendations • Knowledge-based • Add domain information Saturday 9 August 14
Mahout • Scalable machine learning library • User based recommenders
• Item based recommenders • Various algorithms • Evaluation & rescoring features • Hadoop integration Saturday 9 August 14
Reca • Thin Clojure wrapper for Mahout’s single- machine recommendation
algorithms • https://github.com/edtsech/reca Saturday 9 August 14
Movie App Demo • 8400000 ratings • 1.7 Gb database
• 162 037 users • 82 715 movies Saturday 9 August 14
Rescoring • Add application logic to the recommender • Add
domain specific information • Helps to make a hybrid recommender Saturday 9 August 14
Evaluation Evaluation of user based algorithm based on 3% of
whole ratings (y axis - average difference) Saturday 9 August 14
Evaluation Evaluation of item based algorithm based on 33% of
whole ratings (y axis - average difference) Saturday 9 August 14
Performance • 1.5Gb of memory • 250 msecs for user
based recommender • 60-90 secs for item based recommender • 0.1 msecs after caching Saturday 9 August 14
Links • Mahout in Action [book] • Collective intelligence [book]
• http://mahout.apache.org/ • http://blog.comsysto.com/2013/04/03/ background-of-collaborative-filtering-with- mahout/ Saturday 9 August 14