Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Personalised Recommendations
Search
Edward Tsech
August 09, 2014
Programming
1
65
Personalised Recommendations
Edward Tsech
August 09, 2014
Tweet
Share
More Decks by Edward Tsech
See All by Edward Tsech
Clojure, Web and Luminus
edtsech
1
220
Other Decks in Programming
See All in Programming
CEDEC2025 長期運営ゲームをあと10年続けるための0から始める自動テスト ~4000項目を50%自動化し、月1→毎日実行にした3年間~
akatsukigames_tech
0
130
STUNMESH-go: Wireguard NAT穿隧工具的源起與介紹
tjjh89017
0
370
LLMOpsのパフォーマンスを支える技術と現場で実践した改善
po3rin
8
930
QA x AIエコシステム段階構築作戦
osu
0
270
Strands Agents で実現する名刺解析アーキテクチャ
omiya0555
1
120
The State of Fluid (2025)
s2b
0
170
ライブ配信サービスの インフラのジレンマ -マルチクラウドに至ったワケ-
mirrativ
1
210
Go製CLIツールをnpmで配布するには
syumai
2
1.2k
オホーツクでコミュニティを立ち上げた理由―地方出身プログラマの挑戦 / TechRAMEN 2025 Conference
lemonade_37
2
470
Flutterと Vibe Coding で個人開発!
hyshu
1
250
Understanding Ruby Grammar Through Conflicts
yui_knk
1
110
Constant integer division faster than compiler-generated code
herumi
2
640
Featured
See All Featured
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
KATA
mclloyd
32
14k
A better future with KSS
kneath
239
17k
Making the Leap to Tech Lead
cromwellryan
134
9.5k
Being A Developer After 40
akosma
90
590k
GitHub's CSS Performance
jonrohan
1031
460k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Side Projects
sachag
455
43k
Balancing Empowerment & Direction
lara
2
570
Typedesign – Prime Four
hannesfritz
42
2.8k
Raft: Consensus for Rubyists
vanstee
140
7.1k
Transcript
Personalised Recommendations Saturday 9 August 14
About me • Ed Tsech • Clojure, JavaScript developer •
@edtsech on twitter, github Saturday 9 August 14
Content • Collaborative filtering • User based • Item based
• Content based / knowledge based recommendations • Mahout • Movie Recommender Example Saturday 9 August 14
Collaborative Filtering • “Collaborative filtering is a method of making
automatic predictions (filtering) about the interests of a user by collecting preferences or taste information from many users (collaborating).” Saturday 9 August 14
Collaborative Filtering • Last.fm, Twitter, Amazon • Pros • Relatively
precise, ability to recommend items from different categories • Cons • Cold start problem Saturday 9 August 14
User-based Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Item-based Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Algorithms • Euclidean distance • Pearson Correlation • Tanimoto Coefficient
• ... Saturday 9 August 14
Euclidean distance Saturday 9 August 14
Pearson Correlation Saturday 9 August 14
Pearson vs Euclidean Saturday 9 August 14
Tanimoto Coefficient Saturday 9 August 14
Other Algorithms • Log-likelihood • Slope one • Singular value
decomposition • K nearest neighbors • Cluster-based Saturday 9 August 14
Content Based • Prismatic • Pros • No cold start
problem, ability to recommender new items • Cons • Harder to implement, not so precise, sometimes stupid. Saturday 9 August 14
Hybrid Systems • Netflix • Mix collaborative filtering & content-based
recommendations • Knowledge-based • Add domain information Saturday 9 August 14
Mahout • Scalable machine learning library • User based recommenders
• Item based recommenders • Various algorithms • Evaluation & rescoring features • Hadoop integration Saturday 9 August 14
Reca • Thin Clojure wrapper for Mahout’s single- machine recommendation
algorithms • https://github.com/edtsech/reca Saturday 9 August 14
Movie App Demo • 8400000 ratings • 1.7 Gb database
• 162 037 users • 82 715 movies Saturday 9 August 14
Rescoring • Add application logic to the recommender • Add
domain specific information • Helps to make a hybrid recommender Saturday 9 August 14
Evaluation Evaluation of user based algorithm based on 3% of
whole ratings (y axis - average difference) Saturday 9 August 14
Evaluation Evaluation of item based algorithm based on 33% of
whole ratings (y axis - average difference) Saturday 9 August 14
Performance • 1.5Gb of memory • 250 msecs for user
based recommender • 60-90 secs for item based recommender • 0.1 msecs after caching Saturday 9 August 14
Links • Mahout in Action [book] • Collective intelligence [book]
• http://mahout.apache.org/ • http://blog.comsysto.com/2013/04/03/ background-of-collaborative-filtering-with- mahout/ Saturday 9 August 14