Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Personalised Recommendations
Search
Edward Tsech
August 09, 2014
Programming
1
67
Personalised Recommendations
Edward Tsech
August 09, 2014
Tweet
Share
More Decks by Edward Tsech
See All by Edward Tsech
Clojure, Web and Luminus
edtsech
1
220
Other Decks in Programming
See All in Programming
高速開発のためのコード整理術
sutetotanuki
1
390
dchart: charts from deck markup
ajstarks
3
990
OSSとなったswift-buildで Xcodeのビルドを差し替えられるため 自分でXcodeを直せる時代になっている ダイアモンド問題編
yimajo
3
610
CSC307 Lecture 08
javiergs
PRO
0
670
Amazon Bedrockを活用したRAGの品質管理パイプライン構築
tosuri13
4
260
AI前提で考えるiOSアプリのモダナイズ設計
yuukiw00w
0
220
Implementation Patterns
denyspoltorak
0
280
Unicodeどうしてる? PHPから見たUnicode対応と他言語での対応についてのお伺い
youkidearitai
PRO
1
1.1k
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.8k
なるべく楽してバックエンドに型をつけたい!(楽とは言ってない)
hibiki_cube
0
140
フロントエンド開発の勘所 -複数事業を経験して見えた判断軸の違い-
heimusu
7
2.8k
Oxlintはいいぞ
yug1224
5
1.3k
Featured
See All Featured
Marketing to machines
jonoalderson
1
4.6k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Paper Plane (Part 1)
katiecoart
PRO
0
4k
Tell your own story through comics
letsgokoyo
1
810
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Optimizing for Happiness
mojombo
379
71k
Navigating the moral maze — ethical principles for Al-driven product design
skipperchong
2
240
Digital Ethics as a Driver of Design Innovation
axbom
PRO
1
170
What's in a price? How to price your products and services
michaelherold
247
13k
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
910
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
580
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
220
Transcript
Personalised Recommendations Saturday 9 August 14
About me • Ed Tsech • Clojure, JavaScript developer •
@edtsech on twitter, github Saturday 9 August 14
Content • Collaborative filtering • User based • Item based
• Content based / knowledge based recommendations • Mahout • Movie Recommender Example Saturday 9 August 14
Collaborative Filtering • “Collaborative filtering is a method of making
automatic predictions (filtering) about the interests of a user by collecting preferences or taste information from many users (collaborating).” Saturday 9 August 14
Collaborative Filtering • Last.fm, Twitter, Amazon • Pros • Relatively
precise, ability to recommend items from different categories • Cons • Cold start problem Saturday 9 August 14
User-based Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Item-based Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Saturday 9 August 14
Algorithms • Euclidean distance • Pearson Correlation • Tanimoto Coefficient
• ... Saturday 9 August 14
Euclidean distance Saturday 9 August 14
Pearson Correlation Saturday 9 August 14
Pearson vs Euclidean Saturday 9 August 14
Tanimoto Coefficient Saturday 9 August 14
Other Algorithms • Log-likelihood • Slope one • Singular value
decomposition • K nearest neighbors • Cluster-based Saturday 9 August 14
Content Based • Prismatic • Pros • No cold start
problem, ability to recommender new items • Cons • Harder to implement, not so precise, sometimes stupid. Saturday 9 August 14
Hybrid Systems • Netflix • Mix collaborative filtering & content-based
recommendations • Knowledge-based • Add domain information Saturday 9 August 14
Mahout • Scalable machine learning library • User based recommenders
• Item based recommenders • Various algorithms • Evaluation & rescoring features • Hadoop integration Saturday 9 August 14
Reca • Thin Clojure wrapper for Mahout’s single- machine recommendation
algorithms • https://github.com/edtsech/reca Saturday 9 August 14
Movie App Demo • 8400000 ratings • 1.7 Gb database
• 162 037 users • 82 715 movies Saturday 9 August 14
Rescoring • Add application logic to the recommender • Add
domain specific information • Helps to make a hybrid recommender Saturday 9 August 14
Evaluation Evaluation of user based algorithm based on 3% of
whole ratings (y axis - average difference) Saturday 9 August 14
Evaluation Evaluation of item based algorithm based on 33% of
whole ratings (y axis - average difference) Saturday 9 August 14
Performance • 1.5Gb of memory • 250 msecs for user
based recommender • 60-90 secs for item based recommender • 0.1 msecs after caching Saturday 9 August 14
Links • Mahout in Action [book] • Collective intelligence [book]
• http://mahout.apache.org/ • http://blog.comsysto.com/2013/04/03/ background-of-collaborative-filtering-with- mahout/ Saturday 9 August 14