Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習入門 (in JSL)
Search
Etsuji Nakai
December 18, 2019
Technology
1
4.3k
機械学習入門 (in JSL)
Etsuji Nakai
December 18, 2019
Tweet
Share
More Decks by Etsuji Nakai
See All by Etsuji Nakai
Agent Development Kit によるエージェント開発入門
enakai00
23
7.7k
GDG Tokyo 生成 AI 論文をわいわい読む会
enakai00
1
630
Lecture course on Microservices : Part 1
enakai00
1
3.7k
Lecture course on Microservices : Part 2
enakai00
2
3.6k
Lecture course on Microservices : Part 3
enakai00
1
3.6k
Lecture course on Microservices : Part 4
enakai00
1
3.6k
JAX / Flax 入門
enakai00
1
770
生成 AI の基礎 〜 サンプル実装で学ぶ基本原理
enakai00
7
4.2k
大規模言語モデルを支える分散学習インフラ Pathways
enakai00
3
540
Other Decks in Technology
See All in Technology
Amazon Bedrock Knowledge Bases × メタデータ活用で実現する検証可能な RAG 設計
tomoaki25
1
110
mairuでつくるクレデンシャルレス開発環境 / Credential-less development environment using Mailru
mirakui
5
540
会社紹介資料 / Sansan Company Profile
sansan33
PRO
11
390k
寫了幾年 Code,然後呢?軟體工程師必須重新認識的 DevOps
cheng_wei_chen
1
1.5k
Jakarta Agentic AI Specification - Status and Future
reza_rahman
0
110
re:Invent2025 3つの Frontier Agents を紹介 / introducing-3-frontier-agents
tomoki10
0
240
AlmaLinux + KVM + Cockpit で始めるお手軽仮想化基盤 ~ 開発環境などでの利用を想定して ~
koedoyoshida
0
110
AI駆動開発における設計思想 認知負荷を下げるフロントエンドアーキテクチャ/ 20251211 Teppei Hanai
shift_evolve
PRO
2
420
Databricks向けJupyter Kernelでデータサイエンティストの開発環境をAI-Readyにする / Data+AI World Tour Tokyo After Party
genda
1
550
.NET 10の概要
tomokusaba
0
120
AI-DLCを現場にインストールしてみた:プロトタイプ開発で分かったこと・やめたこと
recruitengineers
PRO
2
160
たまに起きる外部サービスの障害に備えたり備えなかったりする話
egmc
0
250
Featured
See All Featured
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
The Invisible Side of Design
smashingmag
302
51k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
Building Flexible Design Systems
yeseniaperezcruz
330
39k
The Language of Interfaces
destraynor
162
25k
Documentation Writing (for coders)
carmenintech
77
5.2k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.2k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Mobile First: as difficult as doing things right
swwweet
225
10k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
110
Agile that works and the tools we love
rasmusluckow
331
21k
Transcript
1 Tech Talk 機械学習入門 (in JSL) Introduction to Machine Learning
2012/12/10 Etsuji Nakai
本日のポイント:AI と機械学習の関係 AI:知性を持っているかのような機能を 提供する製品・サービスを実現 機械学習:「過去のデータ」の特徴を発見し て、「未知のデータ」の予測を行う技術 2 中の技術は、さまざま・・・
本日のポイント:AI と機械学習の関係 AI:知性を持っているかのような機能を 提供する製品・サービスを実現 機械学習:「過去のデータ」の特徴を発見し て、「未知のデータ」の予測を行う技術 3 ディープラーニング(深層学習): 画像・動画・音声・自然言語などの 「非構造化データ」に高い
予測性能を発揮する機械学習の一手法 最近のAIでよく使われる主要技術
ディープラーニングによる画像認識技術(Google フォト) 4 画像の種類を識別して、 自動で「アルバム」を作成 https://photos.google.com/albums
ディープラーニングによる自然言語処理技術(Gmail) https://gmail.googleblog.com/2016/03/smart-reply-comes-to-inbox-by-gmail-on-the-web.html 文脈を理解して 返答文を自動生成 スマホからの 返信の 20% 以上 5 返答メッセージを選択
6 ディープラーニング(深層学習) の仕組み
ニューラルネットワークの仕組み 7 Input “cat” ニューラルネットワークの本質は 「入力データから予測値を出力する関数」
「関数」って何でしたっけ? 8 係数(パラメーター θ)の値を変えると 同じ入力値から、得られる出力値が変化する 計算式 x 入力値 y 出力値
教師あり学習の仕組み label, input 正解ラベルのついた「トレーニングデータ」 に対して、予測の正解率が向上するように 関数に含まれるパラメータをチューニング “cat” “dog” “car” “apple”
OUTPUT
ディープラーニングが実用化した背景 • 大量の学習データが収集・利用可能に • 大量のデータが学習を行う並列計算技術の発達 • 効率的に学習を行うアルゴリズムの開発 10
ディープラーニングが実用化した背景 • 大量の学習データが収集・利用可能に • 大量のデータが学習を行う並列計算技術の発達 • 効率的に学習を行うアルゴリズムの開発 11 すべて某社の 得意分野
本日のポイント:AI と機械学習の関係 AI:知性を持っているかのような機能を 提供する製品・サービスを実現 機械学習:「過去のデータ」の特徴を発見し て、「未知のデータ」の予測を行う技術 12 ディープラーニング(深層学習): 画像・動画・音声・自然言語などの 「非構造化データ」に高い
予測性能を発揮する機械学習の一手法 最近のAIでよく使われる主要技術
まとめ • 機械学習 ◦ 過去データの特徴を自動的に発見して、新しいデータについて 予測する技術 • ディープラーニング(深層学習) ◦ ニューラルネットワークを用いた機械学習技術
◦ 非構造化データ(画像・音声・自然言語など)に高い予測性能 を発揮 • AI(人工知能) ◦ あたかも知能を持つかのような機能を提供する製品・サービス ◦ 最近はディープラーニングを活用したものが多い 13
Thank you !