Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習入門 (in JSL)
Search
Etsuji Nakai
December 18, 2019
Technology
1
4.2k
機械学習入門 (in JSL)
Etsuji Nakai
December 18, 2019
Tweet
Share
More Decks by Etsuji Nakai
See All by Etsuji Nakai
Agent Development Kit によるエージェント開発入門
enakai00
19
3.6k
GDG Tokyo 生成 AI 論文をわいわい読む会
enakai00
1
570
Lecture course on Microservices : Part 1
enakai00
1
3.6k
Lecture course on Microservices : Part 2
enakai00
2
3.6k
Lecture course on Microservices : Part 3
enakai00
1
3.5k
Lecture course on Microservices : Part 4
enakai00
1
3.5k
JAX / Flax 入門
enakai00
1
540
生成 AI の基礎 〜 サンプル実装で学ぶ基本原理
enakai00
7
3.9k
大規模言語モデルを支える分散学習インフラ Pathways
enakai00
3
510
Other Decks in Technology
See All in Technology
rubygem開発で鍛える設計力
joker1007
2
200
フィンテック養成勉強会#54
finengine
0
180
Amazon S3標準/ S3 Tables/S3 Express One Zoneを使ったログ分析
shigeruoda
3
470
Javaで作る RAGを活用した Q&Aアプリケーション
recruitengineers
PRO
1
110
~宇宙最速~2025年AWS Summit レポート
satodesu
1
1.8k
AWS テクニカルサポートとエンドカスタマーの中間地点から見えるより良いサポートの活用方法
kazzpapa3
2
540
Uniadex__公開版_20250617-AIxIoTビジネス共創ラボ_ツナガルチカラ_.pdf
iotcomjpadmin
0
160
Windows 11 で AWS Documentation MCP Server 接続実践/practical-aws-documentation-mcp-server-connection-on-windows-11
emiki
0
960
Node-REDのFunctionノードでMCPサーバーの実装を試してみた / Node-RED × MCP 勉強会 vol.1
you
PRO
0
110
Oracle Audit Vault and Database Firewall 20 概要
oracle4engineer
PRO
3
1.7k
AWS Summit Japan 2025 Community Stage - App workflow automation by AWS Step Functions
matsuihidetoshi
1
260
なぜ私はいま、ここにいるのか? #もがく中堅デザイナー #プロダクトデザイナー
bengo4com
0
410
Featured
See All Featured
How GitHub (no longer) Works
holman
314
140k
GraphQLとの向き合い方2022年版
quramy
48
14k
Stop Working from a Prison Cell
hatefulcrawdad
270
20k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
20k
Optimizing for Happiness
mojombo
379
70k
How to Think Like a Performance Engineer
csswizardry
24
1.7k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
670
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
Scaling GitHub
holman
459
140k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Statistics for Hackers
jakevdp
799
220k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Transcript
1 Tech Talk 機械学習入門 (in JSL) Introduction to Machine Learning
2012/12/10 Etsuji Nakai
本日のポイント:AI と機械学習の関係 AI:知性を持っているかのような機能を 提供する製品・サービスを実現 機械学習:「過去のデータ」の特徴を発見し て、「未知のデータ」の予測を行う技術 2 中の技術は、さまざま・・・
本日のポイント:AI と機械学習の関係 AI:知性を持っているかのような機能を 提供する製品・サービスを実現 機械学習:「過去のデータ」の特徴を発見し て、「未知のデータ」の予測を行う技術 3 ディープラーニング(深層学習): 画像・動画・音声・自然言語などの 「非構造化データ」に高い
予測性能を発揮する機械学習の一手法 最近のAIでよく使われる主要技術
ディープラーニングによる画像認識技術(Google フォト) 4 画像の種類を識別して、 自動で「アルバム」を作成 https://photos.google.com/albums
ディープラーニングによる自然言語処理技術(Gmail) https://gmail.googleblog.com/2016/03/smart-reply-comes-to-inbox-by-gmail-on-the-web.html 文脈を理解して 返答文を自動生成 スマホからの 返信の 20% 以上 5 返答メッセージを選択
6 ディープラーニング(深層学習) の仕組み
ニューラルネットワークの仕組み 7 Input “cat” ニューラルネットワークの本質は 「入力データから予測値を出力する関数」
「関数」って何でしたっけ? 8 係数(パラメーター θ)の値を変えると 同じ入力値から、得られる出力値が変化する 計算式 x 入力値 y 出力値
教師あり学習の仕組み label, input 正解ラベルのついた「トレーニングデータ」 に対して、予測の正解率が向上するように 関数に含まれるパラメータをチューニング “cat” “dog” “car” “apple”
OUTPUT
ディープラーニングが実用化した背景 • 大量の学習データが収集・利用可能に • 大量のデータが学習を行う並列計算技術の発達 • 効率的に学習を行うアルゴリズムの開発 10
ディープラーニングが実用化した背景 • 大量の学習データが収集・利用可能に • 大量のデータが学習を行う並列計算技術の発達 • 効率的に学習を行うアルゴリズムの開発 11 すべて某社の 得意分野
本日のポイント:AI と機械学習の関係 AI:知性を持っているかのような機能を 提供する製品・サービスを実現 機械学習:「過去のデータ」の特徴を発見し て、「未知のデータ」の予測を行う技術 12 ディープラーニング(深層学習): 画像・動画・音声・自然言語などの 「非構造化データ」に高い
予測性能を発揮する機械学習の一手法 最近のAIでよく使われる主要技術
まとめ • 機械学習 ◦ 過去データの特徴を自動的に発見して、新しいデータについて 予測する技術 • ディープラーニング(深層学習) ◦ ニューラルネットワークを用いた機械学習技術
◦ 非構造化データ(画像・音声・自然言語など)に高い予測性能 を発揮 • AI(人工知能) ◦ あたかも知能を持つかのような機能を提供する製品・サービス ◦ 最近はディープラーニングを活用したものが多い 13
Thank you !