Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習入門 (in JSL)
Search
Etsuji Nakai
December 18, 2019
Technology
1
4.3k
機械学習入門 (in JSL)
Etsuji Nakai
December 18, 2019
Tweet
Share
More Decks by Etsuji Nakai
See All by Etsuji Nakai
Agent Development Kit によるエージェント開発入門
enakai00
23
7.8k
GDG Tokyo 生成 AI 論文をわいわい読む会
enakai00
1
630
Lecture course on Microservices : Part 1
enakai00
1
3.7k
Lecture course on Microservices : Part 2
enakai00
2
3.6k
Lecture course on Microservices : Part 3
enakai00
1
3.6k
Lecture course on Microservices : Part 4
enakai00
1
3.6k
JAX / Flax 入門
enakai00
1
810
生成 AI の基礎 〜 サンプル実装で学ぶ基本原理
enakai00
7
4.2k
大規模言語モデルを支える分散学習インフラ Pathways
enakai00
3
540
Other Decks in Technology
See All in Technology
さくらのクラウド開発ふりかえり2025
kazeburo
2
1.2k
AIエージェント開発と活用を加速するワークフロー自動生成への挑戦
shibuiwilliam
5
870
AI駆動開発ライフサイクル(AI-DLC)の始め方
ryansbcho79
0
200
[2025-12-12]あの日僕が見た胡蝶の夢 〜人の夢は終わらねェ AIによるパフォーマンスチューニングのすゝめ〜
tosite
0
190
Bedrock AgentCore Evaluationsで学ぶLLM as a judge入門
shichijoyuhi
2
260
AI との良い付き合い方を僕らは誰も知らない
asei
0
270
オープンソースKeycloakのMCP認可サーバの仕様の対応状況 / 20251219 OpenID BizDay #18 LT Keycloak
oidfj
0
190
20251222_サンフランシスコサバイバル術
ponponmikankan
2
140
日本の AI 開発と世界の潮流 / GenAI Development in Japan
hariby
1
500
7,000万ユーザーの信頼を守る「TimeTree」のオブザーバビリティ実践 ( Datadog Live Tokyo )
bell033
1
100
マイクロサービスへの5年間 ぶっちゃけ何をしてどうなったか
joker1007
21
8.3k
Snowflake導入から1年、LayerXのデータ活用の現在 / One Year into Snowflake: How LayerX Uses Data Today
civitaspo
0
2.5k
Featured
See All Featured
Music & Morning Musume
bryan
46
7k
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
30
Mobile First: as difficult as doing things right
swwweet
225
10k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.2k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
82
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
130
Building Adaptive Systems
keathley
44
2.9k
WENDY [Excerpt]
tessaabrams
8
35k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
100
Transcript
1 Tech Talk 機械学習入門 (in JSL) Introduction to Machine Learning
2012/12/10 Etsuji Nakai
本日のポイント:AI と機械学習の関係 AI:知性を持っているかのような機能を 提供する製品・サービスを実現 機械学習:「過去のデータ」の特徴を発見し て、「未知のデータ」の予測を行う技術 2 中の技術は、さまざま・・・
本日のポイント:AI と機械学習の関係 AI:知性を持っているかのような機能を 提供する製品・サービスを実現 機械学習:「過去のデータ」の特徴を発見し て、「未知のデータ」の予測を行う技術 3 ディープラーニング(深層学習): 画像・動画・音声・自然言語などの 「非構造化データ」に高い
予測性能を発揮する機械学習の一手法 最近のAIでよく使われる主要技術
ディープラーニングによる画像認識技術(Google フォト) 4 画像の種類を識別して、 自動で「アルバム」を作成 https://photos.google.com/albums
ディープラーニングによる自然言語処理技術(Gmail) https://gmail.googleblog.com/2016/03/smart-reply-comes-to-inbox-by-gmail-on-the-web.html 文脈を理解して 返答文を自動生成 スマホからの 返信の 20% 以上 5 返答メッセージを選択
6 ディープラーニング(深層学習) の仕組み
ニューラルネットワークの仕組み 7 Input “cat” ニューラルネットワークの本質は 「入力データから予測値を出力する関数」
「関数」って何でしたっけ? 8 係数(パラメーター θ)の値を変えると 同じ入力値から、得られる出力値が変化する 計算式 x 入力値 y 出力値
教師あり学習の仕組み label, input 正解ラベルのついた「トレーニングデータ」 に対して、予測の正解率が向上するように 関数に含まれるパラメータをチューニング “cat” “dog” “car” “apple”
OUTPUT
ディープラーニングが実用化した背景 • 大量の学習データが収集・利用可能に • 大量のデータが学習を行う並列計算技術の発達 • 効率的に学習を行うアルゴリズムの開発 10
ディープラーニングが実用化した背景 • 大量の学習データが収集・利用可能に • 大量のデータが学習を行う並列計算技術の発達 • 効率的に学習を行うアルゴリズムの開発 11 すべて某社の 得意分野
本日のポイント:AI と機械学習の関係 AI:知性を持っているかのような機能を 提供する製品・サービスを実現 機械学習:「過去のデータ」の特徴を発見し て、「未知のデータ」の予測を行う技術 12 ディープラーニング(深層学習): 画像・動画・音声・自然言語などの 「非構造化データ」に高い
予測性能を発揮する機械学習の一手法 最近のAIでよく使われる主要技術
まとめ • 機械学習 ◦ 過去データの特徴を自動的に発見して、新しいデータについて 予測する技術 • ディープラーニング(深層学習) ◦ ニューラルネットワークを用いた機械学習技術
◦ 非構造化データ(画像・音声・自然言語など)に高い予測性能 を発揮 • AI(人工知能) ◦ あたかも知能を持つかのような機能を提供する製品・サービス ◦ 最近はディープラーニングを活用したものが多い 13
Thank you !